Sex ratio and life history traits at reaching sexual maturity in the dioecious shrub Fuchsia parviflora: field and common garden experiments

2021 ◽  
pp. 1-6
Author(s):  
Jessica S. Ambriz ◽  
Clementina González ◽  
Eduardo Cuevas

Abstract Fuchsia parviflora is a dioecious shrub that depends on biotic pollination for reproduction. Previous studies suggest that the male plants produce more flowers, and male-biased sex ratios have been found in some natural populations. To assess whether the biased sex ratios found between genders in natural populations are present at the point at which plants reach sexual maturity, and to identify possible trade-offs between growth and reproduction, we performed a common garden experiment. Finally, to complement the information of the common garden experiment, we estimated the reproductive biomass allocation between genders in one natural population. Sex ratios at reaching sexual maturity in F. parviflora did not differ from 0.5, except in one population, which was the smallest seedling population. We found no differences between genders in terms of the probability of germination or flowering. When flowering began, female plants were taller than males and the tallest plants of both genders required more time to reach sexual maturity. Males produced significantly more flowers than females, and the number of flowers increased with plant height in both genders. Finally, in the natural population studied, the investment in reproductive biomass was seven-fold greater in female plants than in male plants. Our results showed no evidence of possible trade-offs between growth and reproduction. Despite the fact that female plants invest more in reproductive biomass, they were taller than the males after flowering, possibly at the expense of herbivory defence.

2002 ◽  
Vol 80 (7) ◽  
pp. 786-795 ◽  
Author(s):  
María Paula Quiroga ◽  
Andrea C Premoli ◽  
Cecilia Ezcurra

We tested the hypothesis that South Andean populations of the highly polymorphic and mostly Northern Hemisphere perennial forb Cerastium arvense L. show ecotypic variation along distinct habitats. We compared differences in morphology and flowering phenology among six natural populations occurring in different environments. Genetic differences were analyzed by a common-garden experiment and isozyme electrophoresis. Several of the morphological differences observed in the field were maintained after more than a year of cultivation in the common garden (e.g., plant height and leaf width). Mean tests and multivariate analyses on morphological traits generally distinguished high-elevation populations from the rest, and a similar grouping of populations was obtained from isozyme data at 10 loci. Cerastium arvense had genetic polymorphism levels of >50% in all populations and an average genetic diversity (HT = 0.254) of which approximately 20% was distributed among populations. These marked genetic differences are probably maintained by restricted gene flow due to variation in flowering time. Morphological and genetic differences suggest ecotypic variation in C. arvense in the southern Andes, which seems to have originated by disruptive selective pressures in different environments and the effect of genetic drift in response to the extreme climatic changes occurring during the Pleistocene.Key words: common-garden experiment, ecotypic variation, elevation and precipitation, genetic diversity, Patagonian Andes, phenology.


2012 ◽  
Vol 64 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Danijela Miljkovic

I. pumila natural populations usually occur in two different habitat types: dune and forest. These I. pumila habitats differ in many abiotic environmental factors, but mostly in available light intensity and quality. The effects of different light intensity on the developmental stability of I. pumila floral traits were analyzed on clones taken from two different natural light habitat types that were raised in contrasting light treatments in experimental garden conditions (common garden experiment). As an indicator of developmental stability, we used two fluctuating asymmetry indices (FA1 and FA8a) of three bilateral symmetric traits of I. pumila flower (FW-fall width, SW-standard width and STW- style branch width). In addition, statistically significant treatment x population interaction was observed for style width. According to the presented results, the observed FA patterns of particular traits did not reflect the whole organism buffering capacity under the given environmental conditions.


1996 ◽  
Vol 351 (1345) ◽  
pp. 1349-1359 ◽  

Analysis of life history evolution in spatially heterogeneous environments was revolutionized by the demonstration by Kawecki & Stearns (1993) and Houston & McNamara (1992) that earlier treatments had used incorrect fitness measures. The implications of this for the analysis of organisms with and without phenotypic plasticity are reviewed. It is shown that analyses ignoring age structure can give misleading results. The plausibility and implications of the assumptions are discussed, and suggestions are made for further work. The usefulness of reciprocal transplant and common garden experiments, in providing information relevant to the assumptions and predictions, is emphasized. Two simulation studies show that life history evolution in temporally heterogeneous environments in which trade-offs are fixed are well predicted by Schaffer’s (1974) model, with modification for asymmetric variations as necessary. Unfortunately the period of study needed to observe such effects is so long as to preclude experimental tests for most organsims.


2017 ◽  
Vol 114 (3) ◽  
pp. 534-539 ◽  
Author(s):  
Pepijn Luijckx ◽  
Eddie Ka Ho Ho ◽  
Majid Gasim ◽  
Suyang Chen ◽  
Andrijana Stanic ◽  
...  

A leading hypothesis for the evolutionary maintenance of sexual reproduction proposes that sex is advantageous because it facilitates adaptation. Changes in the environment stimulate adaptation but not all changes are equivalent; a change may occur along one or multiple environmental dimensions. In two evolution experiments with the facultatively sexual rotifer Brachionus calyciflorus, we test how environmental complexity affects the evolution of sex by adapting replicate populations to various environments that differ from the original along one, two, or three environmental dimensions. Three different estimates of fitness (growth, lifetime reproduction, and population density) confirmed that populations adapted to their new environment. Growth measures revealed an intriguing cost of complex adaptations: populations that adapted to more complex environments lost greater amounts of fitness in the original environment. Furthermore, both experiments showed that B. calyciflorus became more sexual when adapting to a greater number of environmental dimensions. Common garden experiments confirmed that observed changes in sex were heritable. As environments in nature are inherently complex these findings help explain why sex is maintained in natural populations.


2019 ◽  
Author(s):  
Noriane M. L. Simon ◽  
Jiro Sugisaka ◽  
Mie N. Honjo ◽  
Sverre Aarseth Tunstad ◽  
George Tunna ◽  
...  

AbstractTrichomes are large epidermal cells on the surface of leaves that are thought to deter herbivores, yet the presence of trichomes can also negatively impact plant growth and reproduction. Stomatal guard cells and trichomes have shared developmental origins, and experimental manipulation of trichome formation can lead to changes in stomatal density. The influence of trichome formation upon stomatal development in natural populations of plants is currently unknown. Here, we show that a natural population of Arabidopsis halleri that includes hairy (trichome-bearing) and glabrous (no trichomes) morphs has differences in stomatal density that are associated with this trichome dimorphism. We found that glabrous morphs had significantly greater stomatal density and stomatal index than hairy morphs. One interpretation is that this arises from a trade-off between the proportions of cells that have trichome and guard cell fates during leaf development. The differences in stomatal density between the two morphs might have impacts upon environmental adaptation, in addition to herbivory deterrence caused by trichome development.


2003 ◽  
Vol 29 (2) ◽  
pp. 179-188
Author(s):  
Abdelaziz Abbad ◽  
Abdelbasset El Hadrami ◽  
Abderrazzak Benchaabane

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 815
Author(s):  
Sandra V. Rojas-Nossa ◽  
José María Sánchez ◽  
Luis Navarro

Floral development depends on multifactor processes related to genetic, physiological, and ecological pathways. Plants respond to herbivores by activating mechanisms aimed at tolerating, compensating, or avoiding loss of biomass and nutrients, and thereby survive in a complex landscape of interactions. Thus, plants need to overcome trade-offs between development, growth, and reproduction vs. the initiation of anti-herbivore defences. This study aims to assess the frequency of phloem-feeding herbivores in wild populations of the Etruscan honeysuckle (Lonicera etrusca Santi) and study their effects on floral development and reproduction. The incidence of herbivory by the honeysuckle aphid (Hyadaphis passerinii del Guercio) was assessed in three wild populations of the Iberian Peninsula. The effect of herbivory on floral morphology, micromorphology of stigmas and pollen, floral rewards, pollination, and fruit and seed set were studied. The herbivory by aphids reduces the size of flowers and pollen. Additionally, it stops nectar synthesis and causes malformation in pollen and microstructures of stigmas, affecting pollination. As a consequence, fruit set and seed weight are reduced. This work provides evidence of the changes induced by phloem-feeding herbivores in floral development and functioning that affect the ecological processes necessary to maintain the reproductive success of plants.


2021 ◽  
Author(s):  
Anna Kirschbaum ◽  
Oliver Bossdorf ◽  
J F Scheepens

Abstract Aims Plant populations in managed grasslands are subject to strong selection exerted by grazing, mowing and fertilization. Many previous studies showed that this can cause evolutionary changes in mean trait values, but little is known about the evolution of phenotypic plasticity in response to land use. In this study, we aimed to elucidate the relationships between phenotypic plasticity – specifically, regrowth ability after biomass removal – and the intensity of grassland management and levels of temporal variation therein. Methods We conducted an outdoor common garden experiment to test if plants from more intensively mown and grazed sites showed an increased ability to regrow after biomass removal. We used three common plant species from temperate European grasslands, with seed material from 58 – 68 populations along gradients of land-use intensity, ranging from extensive (only light grazing) to very intensive management (up to four cuts per year). Important findings In two out of three species, we found significant population differentiation in regrowth ability after clipping. While variation in regrowth ability was unrelated to the mean land-use intensity of populations of origin, we found a relationship with its temporal variation in P. lanceolata, where plants experiencing less variable environmental conditions over the last 11 years showed stronger regrowth in reproductive biomass after clipping. Therefore, while mean grazing and mowing intensity may not select for regrowth ability, the temporal stability of the environmental heterogeneity created by land use may have caused its evolution in some species.


Sign in / Sign up

Export Citation Format

Share Document