phloem feeding
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 51)

H-INDEX

33
(FIVE YEARS 6)

Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1722
Author(s):  
Javier E. Mercado ◽  
Robert T. Walker ◽  
Scott Franklin ◽  
Shannon L. Kay ◽  
Susana Karen Gomez ◽  
...  

Bark beetles and their associated fungi kill trees readily, but we often ignore which organism is the leading cause of tree mortality. While phloem feeding beetles inhibit photosynthate transport, their associated fungi block the tracheids disrupting transpiration. Within the family Pinaceae, knowledge of tree physiological decline following bark beetle and associated fungi colonization is limited to the genus Pinus. Here we investigate the physiological response of Pseudotsuga (P. menziesii) to bark beetles or its fungi. We hypothesized that fungi block water transport in Douglas-fir causing faster mortality than by bark beetle activity alone. We successfully lured Douglas-fir beetle to attack a subset of trees in our experimental area using pheromones and compared Beetle-Killed trees with mechanically Girdled, and Control trees. During spring snowmelt, nine months after treatments were applied, Control, Girdled, and five trees that Survived beetle attack had higher transpiration rates and less negative pre-dawn water potential than five Beetle-Killed trees. Declines in transpiration and leaf water potential in our Beetle-Killed trees occurred much earlier than those in studies of beetle-attacked lodgepole pines, suggesting stronger defensive traits in Douglas-fir. Our data suggest that, as in pines, bark beetle-associated fungi are the leading cause of mortality in Douglas-fir beetle-attacked trees.


2021 ◽  
Author(s):  
Tara-Kay L. Jones ◽  
Julio S. Bernal ◽  
Raul F. Medina

Dalbulus maidis [(DeLong & Wolcott), corn leafhopper], a phloem-feeding insect, is the most efficient vector of maize stunting pathogens (Spiroplasma kunkelii, Maize bushy stunt phytoplasma, and Maize rayado fino virus) in the Americas. Studies involving gene editing in insects are rapidly providing information that can potentially be used for insect vector and plant disease control. RNA interference (RNAi), a sequence-specific gene silencing method, is one of the most widely used molecular tools in functional genomics studies. RNAi uses exogenous double-stranded RNA (dsRNA) or small interfering RNA (siRNA) to prevent the production of proteins by inhibiting the expression of their corresponding messenger RNA (mRNA). In this study, we measured the efficacy of gene silencing, and its effects on D. maidis mortality as proof of concept that RNAi is a viable tool for use in genetic pest control of phloem-feeding insects. Oral delivery of dsRNA using an artificial diet was used to silence two key insect genes, vacuolar ATP synthase subunit B, and subunit D (V-ATPase B and V-ATPase D). Our results showed reduced gene expression of V-ATPase B and V-ATPase D after ingestion of dsRNA, and significantly higher mortality, and wing deformation, associated with reduced gene expression, compared to control insects that were not orally fed dsRNA. These results reveal RNAi as a viable tool for use in genetic pest control of phloem-feeding insects, and a way for further functional genomic studies, such as identification of potential target genes for either population suppression or population replacement of this vector of maize diseases.


Author(s):  
Algirdas Ivanauskas ◽  
Deividas Valiunas ◽  
Jolanta Rimsaite ◽  
Jurij Danilov ◽  
Donatas Sneideris ◽  
...  

Our previous studies reported that phytoplasma was the causative agent of the pine disease in Curonian spit, Lithuania. In this study, insects from diseased pine trees and their adjacent areas were collected from 2016 to 2019 to further identify potential insect vectors that spread phytoplasmas. A total of 1018 phloem-feeding insects (order Hemiptera) were identified, 98.62% of which were aphids (Aphididae), and no known phytoplasma vectors were found. Results from semi-nested PCR using phytoplasma-universal primers revealed that phytoplasmas were detected in scots pine aphids (Cinara pini), waxy grey pine needle aphids (Cinara pineti), and species-unknown aphids. Further sequence analysis and virtual RFLP analysis of aphid-harbored phytoplasma strains indicated that they were closely related to ‘Candidatus Phytoplasma pini’ (16SrXXI-A), but mainly 16SrXXI-A variants, which were also main strains identified in diseased pine trees. In addition, three new phytoplasma subgroups were delineated in the present study. Subgroups 16SrXXI-C and 16SrXXI-D were unveiled from previously identified (but classification was overlooked) Lithuanian pine phytoplasma strains. Subgroup 16SrXXI-E was discovered from the newly identified aphid-harbored phytoplasmas. Further transmission trial study on these aphids will provide insights into the epidemiology, and pathosystem of pine phytoplasma diseases, as well as the disease management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guang Wang ◽  
Jing-Jiang Zhou ◽  
Yan Li ◽  
Yuping Gou ◽  
Peter Quandahor ◽  
...  

AbstractTrehalose serves multifarious roles in growth and development of insects. In this study, we demonstrated that the high trehalose diet increased the glucose content, and high glucose diet increased the glucose content but decreased the trehalose content of Acyrthosiphon pisum. RNA interference (RNAi) of trehalose-6-phosphate synthase gene (ApTPS) decreased while RNAi of trehalase gene (ApTRE) increased the trehalose and glucose contents. In the electrical penetration graph experiment, RNAi of ApTPS increased the percentage of E2 waveform and decreased the percentage of F and G waveforms. The high trehalose and glucose diets increased the percentage of E2 waveform of A. pisum red biotype. The correlation between feeding behavior and sugar contents indicated that the percentage of E1 and E2 waveforms were increased but np, C, F and G waveforms were decreased in low trehalose and glucose contents. The percentage of np, E1 and E2 waveforms were reduced but C, F and G waveforms were elevated in high trehalose and glucose contents. The results suggest that the A. pisum with high trehalose and glucose contents spent less feeding time during non-probing phase and phloem feeding phase, but had an increased feeding time during probing phase, stylet work phase and xylem feeding phase.


2021 ◽  
Vol 12 ◽  
Author(s):  
Diana Naalden ◽  
Paula J. M. van Kleeff ◽  
Sarmina Dangol ◽  
Marieke Mastop ◽  
Rebecca Corkill ◽  
...  

The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yi Li ◽  
Boon Huat Cheah ◽  
Yu-Fu Fang ◽  
Yun-Hung Kuang ◽  
Shau-Ching Lin ◽  
...  

Abstract Background Outbreaks of insect pests in paddy fields cause heavy losses in global rice yield annually, a threat projected to be aggravated by ongoing climate warming. Although significant progress has been made in the screening and cloning of insect resistance genes in rice germplasm and their introgression into modern cultivars, improved rice resistance is only effective against either chewing or phloem-feeding insects. Results In this study, the results from standard and modified seedbox screening, settlement preference and honeydew excretion tests consistently showed that Qingliu, a previously known leaffolder-resistant rice variety, is also moderately resistant to brown planthopper (BPH). High-throughput RNA sequencing showed a higher number of differentially expressed genes (DEGs) at the infestation site, with 2720 DEGs in leaves vs 181 DEGs in sheaths for leaffolder herbivory and 450 DEGs in sheaths vs 212 DEGs in leaves for BPH infestation. The leaf-specific transcriptome revealed that Qingliu responds to leaffolder feeding by activating jasmonic acid biosynthesis genes and genes regulating the shikimate and phenylpropanoid pathways that are essential for the biosynthesis of salicylic acid, melatonin, flavonoids and lignin defensive compounds. The sheath-specific transcriptome revealed that Qingliu responds to BPH infestation by inducing salicylic acid-responsive genes and those controlling cellular signaling cascades. Taken together these genes could play a role in triggering defense mechanisms such as cell wall modifications and cuticular wax formation. Conclusions This study highlighted the key defensive responses of a rarely observed rice variety Qingliu that has resistance to attacks by two different feeding guilds of herbivores. The leaffolders are leaf-feeder while the BPHs are phloem feeders, consequently Qingliu is considered to have dual resistance. Although the defense responses of Qingliu to both insect pest types appear largely dissimilar, the phenylpropanoid pathway (or more specifically phenylalanine ammonia-lyase genes) could be a convergent upstream pathway. However, this possibility requires further studies. This information is valuable for breeding programs aiming to generate broad spectrum insect resistance in rice cultivars.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michael L. A. E. Easson ◽  
Osnat Malka ◽  
Christian Paetz ◽  
Anna Hojná ◽  
Michael Reichelt ◽  
...  

AbstractTwo-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abinaya Manivannan ◽  
Bhawana Israni ◽  
Katrin Luck ◽  
Monika Götz ◽  
Elena Seibel ◽  
...  

Cruciferous plants in the order Brassicales defend themselves from herbivory using glucosinolates: sulfur-containing pro-toxic metabolites that are activated by hydrolysis to form compounds, such as isothiocyanates, which are toxic to insects and other organisms. Some herbivores are known to circumvent glucosinolate activation with glucosinolate sulfatases (GSSs), enzymes that convert glucosinolates into inactive desulfoglucosinolates. This strategy is a major glucosinolate detoxification pathway in a phloem-feeding insect, the silverleaf whitefly Bemisia tabaci, a serious agricultural pest of cruciferous vegetables. In this study, we identified and characterized an enzyme responsible for glucosinolate desulfation in the globally distributed B. tabaci species MEAM1. In in vitro assays, this sulfatase showed a clear preference for indolic glucosinolates compared with aliphatic glucosinolates, consistent with the greater representation of desulfated indolic glucosinolates in honeydew. B. tabaci might use this detoxification strategy specifically against indolic glucosinolates since plants may preferentially deploy indolic glucosinolates against phloem-feeding insects. In vivo silencing of the expression of the B. tabaci GSS gene via RNA interference led to lower levels of desulfoglucosinolates in honeydew. Our findings expand the knowledge on the biochemistry of glucosinolate detoxification in phloem-feeding insects and suggest how detoxification pathways might facilitate plant colonization in a generalist herbivore.


Sign in / Sign up

Export Citation Format

Share Document