Buttress formation and directional stress experienced during critical phases of tree development

1998 ◽  
Vol 14 (3) ◽  
pp. 341-349 ◽  
Author(s):  
COLIN A. CHAPMAN ◽  
LES KAUFMAN ◽  
LAUREN J. CHAPMAN

Patterns of buttress formation in tropical trees vary greatly within and among species. In Kibale National Park, Uganda, some form of a buttres was found on 23% of the 78 species (1785 trees) sampled from a variety of distantly related families. Large differences in buttress formation were documented within a single family and even within the same genus. Previous studies have suggested that buttresses are mechanical adaptations to counter asymmetric loads experienced during brief critical phases in a tree’s development and these persist after the need for a mechanical support has disappeared. As a tree grows from the understorey, up to the canopy, or emerges from the canopy, the potential number of occasions that a tree will experience directional stress increases. Many canopy level trees will probably have been in the vicinity of a treefall gap during their development, while emergent trees may experience gap exposure in addition to wind stresses associated with canopy emergence. Therefore, it is predicted that understorey trees should have fewer and less developed buttresses (after correcting for overall tree size) than canopy trees, which should have fewer and less developed buttresses than emergent trees. Detailed measurements of buttresses from 194 trees of eight species support this prediction. There was no evidence that trees thought to have experienced directional stress associated with selective logging almost 30 y ago had increased the number or size of existing buttresses. The pattern of buttressing in Kibale generally supports the idea that buttresses are mechanical adaptations to counter episodic asymmetric loads, and that buttresses persist after the need for a mechanical support has disappeared.

Ostrich ◽  
2015 ◽  
Vol 87 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Pirita Latja ◽  
Geoffrey M Malinga ◽  
Anu Valtonen ◽  
Heikki Roininen

2021 ◽  
Vol 14 ◽  
pp. 194008292110147
Author(s):  
Dipto Sarkar ◽  
Colin A. Chapman

The term ‘smart forest’ is not yet common, but the proliferation of sensors, algorithms, and technocentric thinking in conservation, as in most other aspects of our lives, suggests we are at the brink of this evolution. While there has been some critical discussion about the value of using smart technology in conservation, a holistic discussion about the broader technological, social, and economic interactions involved with using big data, sensors, artificial intelligence, and global corporations is largely missing. Here, we explore the pitfalls that are useful to consider as forests are gradually converted to technological sites of data production for optimized biodiversity conservation and are consequently incorporated in the digital economy. We consider who are the enablers of the technologically enhanced forests and how the gradual operationalization of smart forests will impact the traditional stakeholders of conservation. We also look at the implications of carpeting forests with sensors and the type of questions that will be encouraged. To contextualize our arguments, we provide examples from our work in Kibale National Park, Uganda which hosts the one of the longest continuously running research field station in Africa.


Sign in / Sign up

Export Citation Format

Share Document