metabolite concentrations
Recently Published Documents


TOTAL DOCUMENTS

986
(FIVE YEARS 219)

H-INDEX

67
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Yu-Long Huang ◽  
Yi-Ru Lin ◽  
Shang-Yueh Tsai

Abstract Quantification of metabolites concentrations in institutional unit (IU) for between subject and long-term comparison is considered important strategy in the applications of magnetic resonance spectroscopy (MRS). The aim of this study is to investigate if metabolite concentrations quantified by convolutional neuronal network (CNN) based method associated with a proposed scaling procedure can reflect variations of the metabolite concentrations in institution unit (IU) at different brain regions with different signal-to-noise-ratio (SNR) and linewidth (LW). An error index based on standard error (SE) is proposed to indicate the confidence levels on the prediction for metabolites. In vivo MRS spectra were collected at 3 brain regions from 44 subjects at 3T system. Metabolite concentrations in IU quantified by LCModel and CNN from 44 subjects were compared. For in vivo spectra characterized under different spectral quality in terms of SNR and LW, line narrowing and noise free spectra were successfully exported by CNN. Concentrations of five metabolites quantified by CNN and LCModel are in similar range with statistically significant Pearson’s correlation coefficients (0.28~0.70). SE of the metabolites show positive correlation with Cramer-Rao lower bound (CRLB) (r=0.60) and with absolute CRLB (r=0.84). In conclusion, the CNN based method with the proposed scaling procedures can be used to quantify in vivo MRS spectra. The concentrations of five major metabolites were reported in IU, which are in the same range as those quantified using a routine MRS quantification procedures by LCModel. The SE can be used as error index indicating predicted uncertainties for metabolites with the information similar to the absolute CRLB.


2021 ◽  
Author(s):  
Johanna Dorst ◽  
Tamas Borbath ◽  
Loreen Ruhm ◽  
Anke Henning

A method to estimate phosphorus (31P) transversal relaxation times (T2) of coupled spin systems is demonstrated. Additionally, intracellular and extracellular pH (pHext, pHint) and relaxation corrected metabolite concentrations are reported. Echo time (TE) series of 31P metabolite spectra were acquired using STEAM localization. Spectra were fitted using LCModel with accurately modeled Vespa basis sets accounting for J−evolution of the coupled spin systems. T2s were estimated by fitting a single exponential two−parameter model across the TE series. Fitted inorganic phosphate frequencies were used to calculate pH, and relaxation times were used to determine the brain metabolite concentrations. The method was demonstrated in the healthy human brain at a field strength of 9.4T. T2 relaxation times of ATP and NAD are the shortest between 8 ms and 20 ms, followed by T2s of inorganic phosphate between 25 ms and 50 ms, and PCr with a T2 of 100 ms. Phosphomonoesters and −diesters have the longest T2s of about 130 ms. Measured T2s are comparable to literature values and fit in a decreasing trend with increasing field strengths. Calculated pHs and metabolite concentrations are also comparable to literature values


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Joanna M. Gambetta ◽  
Valentina Romat ◽  
Leigh M. Schmidtke ◽  
Bruno P. Holzapfel

Sunburn is a physiological disorder that reduces grape quality and vineyard yield. It is the result of excessive sunlight and high temperatures. As climate change continues to increase air temperatures, reports of sunburn damage in vineyards worldwide are becoming more frequent. Grapes produce secondary metabolites (carotenoids, polyphenols and aroma compounds) to counter photooxidative stress and acclimate to higher radiation environments. This study evaluated changes in these compounds in during ripening when grapes were exposed post-flowering (ED) and at véraison (LD), and compared them to a nondefoliated control (ND). ND contained more α-terpineol and violaxanthin, and the defoliated treatments contained more zeaxanthin, β-carotene, C6 compounds and flavonoids. ED berries adapted better to higher-light environments, displayed larger changes in secondary metabolite concentrations and lower levels of sunburn damage than LD berries did. The composition of berries with increasing sunburn damage was evaluated for the first time. Berries with no damage had the lowest concentrations of flavonoids and oxidized glutathione, and the highest concentrations of chlorophyll and α-terpineol. As damage increased, destruction of photosynthetic pigments, increase in polyphenols and loss of aroma compounds were evidenced. A significant effect of temperature and developmental stage on grape composition was also observed. This study provides a holistic overview of changes in secondary metabolites experienced by grape berries when exposed to excessive light, how these vary along development and how they affect sunburn incidence.


2021 ◽  
Author(s):  
Meng Yu ◽  
Xiang Li ◽  
Bingqing Liu ◽  
Yaping Li ◽  
Ling Liu ◽  
...  

Abstract Dermal contact with dust is commonly considered an important pathway of exposure to organophosphate esters (OPEs), but the importance of OPE uptake from diet is unclear. Herein, we used hand wipes to estimate OPE exposure from indoor dust and examined whether urinary OPE metabolite concentrations were influenced by sociodemographic characteristics, OPE amount in hand wipes, and dietary factors. OPEs were measured in urine and hand wipes from 6–18-year old children and adolescents (n=929) in Liuzhou, China. Sociodemographic and dietary factors were obtained from questionnaire. Six OPE metabolites were detected in >70% of the urine samples, and seven OPEs were detected in >50% of the hand wipes. Estimated daily intakes (EDIs) were calculated using urinary OPE metabolites to investigate the total daily intake of OPEs, in which 0.36–10.1% of the total intake was attributed to the exposure from dermal absorption. In multivariate linear regression models, sex, age, and maternal education were significant predictors of urinary OPE metabolite concentrations. Urinary diphenyl phosphate (DPHP) is positively associated with its parent compounds 2-ethylhexyl-diphenyl phosphate (EHDPP) and triphenyl phosphate (TPHP) in hand wipes. High versus low vegetable intake was associated with a 23.7% higher DPHP (95% confidence interval (CI): 0.51%, 52.1%). Barreled water drinking was associated with a 30.4% (95% CI: 11.8%, 52.0%) increase in bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP) compared to tap water drinking. Our results suggested the widespread exposure to OPEs in children and adolescents. In additional to dermal absorption, dietary intake may be an important exposure source of certain OPEs.


Author(s):  
Javad Sheikhi Koohsar ◽  
Fariborz Faeghi ◽  
Raheleh Rafaiee ◽  
Mohammad Niroumand Sarvandani ◽  
Sadegh Masjoodi ◽  
...  

Objective: Chronic METH use results in neurodegenerative alternations in the human brain. The present study aimed to assess the long-term METH impact on brain metabolite concentrations in cases meeting the DSM-5 criteria regarding METH use. Method: We recruited 42 METH users meeting the DSM-5 criteria and 21 healthy controls. Psychotic signs were measured using the Positive and Negative Syndrome Scale (PANSS). Proton magnetic resonance spectroscopy (1HMRS) evaluating Myo-inositol (Ml), Choline (Cho), Glutamine plus Glutamate (Glx), N-acetyl aspartate (NAA), and Creatine (Cre) were obtained in the dopaminergic pathway (Frontal Cortex, Substantia nigra, Ventral Tegmental Area (VTA), Nucleus Accumbens (NAc), Hippocampus, Striatum,) the subjects. All participants collected urine specimens for 24 hours to measure presence of specific metabolites including METH metabolite level, 5-Hydroxy indoleacetic acid metabolite (for serotonin level monitoring), and metanephrine metabolite (for dopamine level monitoring). Results: Dopamine and Serotonin increased in the METH group (P < 0.001). METH caused an increase in the Cre (P < 0.001) and a decline in the Glx (P < 0.001), NAA (P = 0.008), and MI (P < 0.001) metabolite concentrations of dopamine circuits in METH users in comparison with healthy subjects. We found no change in Cho metabolite concentration. Psychological data and the neurometabolite concentrations in the studied area of the brain were significantly correlated. Conclusion: There is an association between METH use and active neurodegeneration in the dopamine circuit, and it causes serious mental illness. 1HMRS can detect patient’s deterioration and progression of disease as well as follow-up management in patients with METH use disorder.


2021 ◽  
Author(s):  
Y.I. Belova ◽  
O.V. Yakovleva

Nitrogen monoxide is a gas transmitter that is an important intermediary in many organ systems, especially in the central nervous system. Nitrogen monoxide is involved in the relaxation of smooth vascular muscles, activation of neurons and responsible for the cytotoxicity of macrophages. The study of change nitrogen oxide metabolite concentration helps to determine its effects on human and animal organs. The study was carried out on laboratory animals of different ages. We used a spectrophotometric method to determine the level of metabolites based on the reaction of nitrites to the Griss reagent. We noted that the maximum level of metabolites NO was observed in newborn animals at the age of 4 days. In addition, metabolite concentrations decreased gradually by 14-15 days of life, reaching a minimum of 30 days Key words: nitrogen monoxide, rats, age, metabolites of nitrogen monoxide, spectrophotometry.


Neurology ◽  
2021 ◽  
pp. 10.1212/WNL.0000000000013128
Author(s):  
Dauvilliers Yves ◽  
Lucie Barateau ◽  
Benita Middleton ◽  
Daan Van Der Veen ◽  
Debra J Skene

Background and Objective:Narcolepsy type 1 (NT1) is an orphan brain disorder caused by the irreversible destruction of orexin neurons. Metabolic disturbances are common in patients with NT1 who have a body mass index (BMI) 10-20% higher than the general population, with one third being obese (BMI>30 kg/m2). Besides the destruction of orexin neurons in NT1, the metabolic alterations in obese and non-obese patients with narcolepsy type 1 remain unknown. The aim of the study was to identify possible differences in plasma metabolic profiles between patients with NT1 and controls as a function of their BMI status.Methods:We used a targeted liquid chromatography-mass spectrometry metabolomics approach to measure 141 circulating, low molecular weight metabolites in drug-free fasted plasma samples from 117 NT1 patients (including 41 obese subjects) compared with 116 BMI-matched controls (including 57 obese subjects).Results:Common metabolites driving the difference between NT1 and controls, irrespective of BMI, were identified, namely sarcosine, glutamate, nonaylcarnitine (C9), 5 long chain lysophosphatidylcholine acyls, one sphingolipid, 12 phosphatidylcholine diacyls and 11 phosphatidylcholine acyl-akyls, all showing increased concentrations in NT1. Metabolite concentrations significantly affected by NT1 (n = 42) and BMI category (n = 40) showed little overlap (n = 5). Quantitative enrichment analysis revealed common metabolic pathways that were implicated in the NT1/control differences, in both normal BMI and obese comparisons, namely glycine and serine, arachidonic acid, and tryptophan metabolisms. The metabolites driving these differences were glutamate, sarcosine and ornithine (glycine and serine metabolism), glutamate and PC aa C34:4 (arachidonic acid metabolism) and glutamate, serotonin and tryptophan (tryptophan metabolism). Linear metabolite-endophenotype regression analyses highlight that as part of the NT1 metabolic phenotype, most of the relationships between the sleep parameters (i.e. slow wave sleep duration, sleep latency and periodic leg movement) and metabolite concentrations seen in the controls were lost.Discussion:These results represented the most comprehensive metabolic profiling of patients with NT1 as a function of BMI and propose some metabolic diagnostic biomarkers for NT1, namely glutamate, sarcosine, serotonin, tryptophan, nonaylcarnitine and some phosphatidylcholines. The metabolic pathways identified offer, if confirmed, possible targets for treatment of obesity in NT1.Classification of Evidence:This study provides Class II evidence that a distinct metabolic profile can differentiate patients with Narcolepsy Type 1 from patients without the disorder.


Thyroid ◽  
2021 ◽  
Author(s):  
Rutchanna M.S. Jongejan ◽  
Evert F.S. van Velsen ◽  
Marcel E Meima ◽  
Theo Klein ◽  
Sjoerd A.A. van den Berg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document