Medical applications in case-based reasoning

2005 ◽  
Vol 20 (3) ◽  
pp. 289-292 ◽  
Author(s):  
ALEC HOLT ◽  
ISABELLE BICHINDARITZ ◽  
RAINER SCHMIDT ◽  
PETRA PERNER

This commentary summarizes case-based reasoning research applied in the medical domain. In this commentary the term ‘medical’ is used in an all-encompassing manner. It comprises all aspects of health, for example, from diagnosis to nutrition planning. This article provides references to researchers in the field, systems, workshops, and landmark publications.

2016 ◽  
Vol 8 (3) ◽  
pp. 31-62 ◽  
Author(s):  
Shaker El-Sappagh ◽  
Mohammed Mahfouz Elmogy

Case-Based Reasoning (CBR) is one of the most suitable AI techniques for building clinical decision support systems. Medical domain complexity introduces many challenges for building these systems. Building the systems' knowledge base from the Electronic Health Record (EHR), the encoding of case-base knowledge with standard medical ontology, and the handling of vague data are examples of these challenges. Although several advantages of using CBR in medicine have been identified, there are no real systems acceptable to physicians. This systematic review examines the current state of CBR and its limitations in the medical domain, especially for diabetes mellitus. The critical evaluation of the status of diabetes CBR systems presents unique opportunities for improving these systems. The literature review covers most of the English language studies extracted from relevant databases by using search terms relating CBR, ontology, Fuzzy, and standard terminology concepts. The authors identify 38 articles published between 1999 and 15 January 2015, which represent original researches in CBR domain. The study includes 15 (39.5%) non-medical studies and 23 (60.5%) medical studies with ~22% for diabetes CBR. A list of 18 integrated evaluation metrics has been proposed and used in the analysis. The results show that the non-medical CBR systems achieved higher advances (50%) than medical systems (42.9%). In addition, the diabetes management CBR systems achieve the lowest advances (21.4%) compared to other systems. These shortages explain the question “why CBR paradigm are not fully utilized in the commercial medical systems?” As a result, there is a distinct need for more comprehensive enhancements in clinical CBR especially diabetes systems.


Author(s):  
X. Blanco Valencia ◽  
D. Bastidas Torres ◽  
C. Piñeros Rodriguez ◽  
D. H. Peluffo-Ordóñez ◽  
M. A. Becerra ◽  
...  

2020 ◽  
pp. 516-552
Author(s):  
Shaker El-Sappagh ◽  
Mohammed Mahfouz Elmogy

Case-Based Reasoning (CBR) is one of the most suitable AI techniques for building clinical decision support systems. Medical domain complexity introduces many challenges for building these systems. Building the systems' knowledge base from the Electronic Health Record (EHR), the encoding of case-base knowledge with standard medical ontology, and the handling of vague data are examples of these challenges. Although several advantages of using CBR in medicine have been identified, there are no real systems acceptable to physicians. This systematic review examines the current state of CBR and its limitations in the medical domain, especially for diabetes mellitus. The critical evaluation of the status of diabetes CBR systems presents unique opportunities for improving these systems. The literature review covers most of the English language studies extracted from relevant databases by using search terms relating CBR, ontology, Fuzzy, and standard terminology concepts. The authors identify 38 articles published between 1999 and 15 January 2015, which represent original researches in CBR domain. The study includes 15 (39.5%) non-medical studies and 23 (60.5%) medical studies with ~22% for diabetes CBR. A list of 18 integrated evaluation metrics has been proposed and used in the analysis. The results show that the non-medical CBR systems achieved higher advances (50%) than medical systems (42.9%). In addition, the diabetes management CBR systems achieve the lowest advances (21.4%) compared to other systems. These shortages explain the question “why CBR paradigm are not fully utilized in the commercial medical systems?” As a result, there is a distinct need for more comprehensive enhancements in clinical CBR especially diabetes systems.


Vestnik MEI ◽  
2020 ◽  
Vol 5 (5) ◽  
pp. 132-139
Author(s):  
Ivan E. Kurilenko ◽  
◽  
Igor E. Nikonov ◽  

A method for solving the problem of classifying short-text messages in the form of sentences of customers uttered in talking via the telephone line of organizations is considered. To solve this problem, a classifier was developed, which is based on using a combination of two methods: a description of the subject area in the form of a hierarchy of entities and plausible reasoning based on the case-based reasoning approach, which is actively used in artificial intelligence systems. In solving various problems of artificial intelligence-based analysis of data, these methods have shown a high degree of efficiency, scalability, and independence from data structure. As part of using the case-based reasoning approach in the classifier, it is proposed to modify the TF-IDF (Term Frequency - Inverse Document Frequency) measure of assessing the text content taking into account known information about the distribution of documents by topics. The proposed modification makes it possible to improve the classification quality in comparison with classical measures, since it takes into account the information about the distribution of words not only in a separate document or topic, but in the entire database of cases. Experimental results are presented that confirm the effectiveness of the proposed metric and the developed classifier as applied to classification of customer sentences and providing them with the necessary information depending on the classification result. The developed text classification service prototype is used as part of the voice interaction module with the user in the objective of robotizing the telephone call routing system and making a shift from interaction between the user and system by means of buttons to their interaction through voice.


Sign in / Sign up

Export Citation Format

Share Document