Sets of uniqueness for trigonometric series and integrals

1950 ◽  
Vol 46 (4) ◽  
pp. 538-548 ◽  
Author(s):  
R. Henstock

It is well known that, if a trigonometric seriesconverges to zero in 0 ≤ x < 2π then all the coefficients are zero. To generalize this property of the series, sets of uniqueness have been defined. A point-set E in 0 ≤ x < 2π is a set of uniqueness if every series (0·1), converging to zero in [0, 2π) − E, has zero coefficients. Otherwise E is a set of multiplicity. For example, every enumerable set is a set of uniqueness. An account of the theory may be found in Zygmund (2), chapter 11, pp. 267 et seq.

1982 ◽  
Vol 34 (3) ◽  
pp. 759-764 ◽  
Author(s):  
Kaoru Yoneda

Let ω0, ω1, … denote the Walsh-Paley functions and let G denote the dyadic group introduced by Fine [3]. Recall that a subset E of G is said to be a set of uniqueness if the zero series is the only Walsh series ∑ akωk which satisfiesA subset E of G which is not a set of uniqueness is called a set of multiplicity.It is known that any subset of G of positive Haar measure is a set of multiplicity [5] and that any countable subset of G is a set of uniqueness [2]. As far as uncountable subsets of Haar measure zero are concerned, both possibilities present themselves. Indeed, among perfect subsets of G of Haar measure zero there are sets of multiplicity [1] and there are sets of uniqueness [5].


1978 ◽  
Vol 21 (2) ◽  
pp. 149-158 ◽  
Author(s):  
G. E. Cross

Several non-absolutely convergent integrals have been defined which generalize the Perron integral. The most significant of these integrals from the point of view of application to trigonometric series are the Pn- and pn-integrals of R. D. James [10] and [11]. The theorems relating the Pn -integral to trigonometric series state essentially that if the series1.1


1979 ◽  
Vol 31 (4) ◽  
pp. 858-866 ◽  
Author(s):  
William R. Wade

Let G denote the group of integers of a p-series field, where p is a prime ≦ 2. Thus, any element can be represented as a sequence {xi }i = 0∞ with 0 ≦ xi < p for each i ≦ 0. Moreover, the dual group {Ψm}m = 0∞ of G can be described by the following process. If m is a non-negative integer with for each k , and if then(1)where for each integer k ≧ 0 and for each x = {xi} ∈ G the functions Φk are defined by(2)In the case that p = 2, the group G is the dyadic group introduced by Fine [1] and the functions are the Walsh-Paley functions. A detailed account of these groups and basic properties can be found in [4].


1973 ◽  
Vol 74 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Vishwa Chander Dumir ◽  
Dharam Singh Khassa

Let K be a closed, bounded, symmetric convex domain with centre at the origin O and gauge function F(x). By a homothetic translate of K with centre a and radius r we mean the set {x: F(x−a) ≤ r}. A family ℳ of homothetic translates of K is called a saturated family or a saturated system if (i) the infimum r of the radii of sets in ℳ is positive and (ii) every homothetic translate of K of radius r intersects some member of ℳ. For a saturated family ℳ of homothetic translates of K, let S denote the point-set union of the interiors of members of ℳ and S(l), the set S ∪ {x: F(x) ≤ l}. The lower density ρℳ(K) of the saturated system ℳ is defined bywhere V(S(l)) denotes the Lebesgue measure of the set S(l). The problem is to find the greatest lower bound ρK of ρℳ(K) over all saturated systems ℳ of homothetic translates of K. In case K is a circle, Fejes Tóth(9) conjectured thatwhere ϑ(K) denotes the density of the thinnest coverings of the plane by translates of K. In part I, we state results already known in this direction. In part II, we prove that ρK = (¼) ϑ(K) when K is strictly convex and in part III, we prove that ρK = (¼) ϑ(K) for all symmetric convex domains.


1968 ◽  
Vol 9 (1) ◽  
pp. 30-35 ◽  
Author(s):  
J. C. Cooke

It is the purpose of this note to discuss the solution of the pair of serieswhere F(x) and G(x) are given and the coefficients an are to be determined.


1989 ◽  
Vol 41 (3) ◽  
pp. 508-555 ◽  
Author(s):  
D. Preiss ◽  
B. S. Thomson

By a symmetric integral is understood an integral obtained from some kind of symmetric derivation process. Such integrals arise most naturally in the study of trigonometric series and in particular to handle the following problem. Suppose that a trigonometric seriesconverges everywhere to a function À. It is known that this may occur without À being integrable in any of the more familiar senses so that the series may not be considered as a Fourier series of À; indeed Denjoy [4] has shown that if bnis a sequence of real numbers decreasing to zero but with+00 then the function À(x) = is not Denjoy-integrable. It is natural to ask then for an integration procedure that can be applied to À in order that the series be the Fourier series of À with respect to this integral.


1931 ◽  
Vol 27 (2) ◽  
pp. 163-173
Author(s):  
S. Verblunsky

1. Letbe a numerical series. If for sufficiently small h > 0 the seriesis convergent, we can form the upper and lower limits of J (h) as h → 0. These limits are called respectively the upper and lower sums (R, 1) of the series (1). For the purposes of the present paper it will be convenient to consider a more extended definition of these upper and lower sums. We shall suppose that for sufficiently small h the series J (h) is summable by Poisson's method. We denote the Poisson sum by PJ (h). The upper and lower limits of PJ (h) as h → 0 will be called the upper and lower sums (R, 1) of the series (1).


1994 ◽  
Vol 49 (2) ◽  
pp. 333-339 ◽  
Author(s):  
Chang-Pao Chen

It is proved that under the following condition, the sum f of the double trigonometric series with coefficients cjk is integrable and the rectangular partial sums smn(f, x, y) converge to f in L1 norm:.


Sign in / Sign up

Export Citation Format

Share Document