Extensions and applications of a tauberian theorem due to valiron

Author(s):  
M. E. Noble

1. Introduction. In the course of an important memoir on integral functions of finite order†, G. Valiron discusses ‘fonctions orientées’, that is, functions with zeros an such that arg an tends to a limit as n → ∞. He obtains results that include the following two theorems, in which Vρ(x) denotes a function of the form , where α1, …, αν are positive integers, and n(r) has its usual significance in the theory of integral functions:.

2019 ◽  
Vol 18 (09) ◽  
pp. 1950167 ◽  
Author(s):  
M. Chacron ◽  
T.-K. Lee

Let [Formula: see text] be a noncommutative division ring with center [Formula: see text], which is algebraic, that is, [Formula: see text] is an algebraic algebra over the field [Formula: see text]. Let [Formula: see text] be an antiautomorphism of [Formula: see text] such that (i) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are positive integers depending on [Formula: see text]. If, further, [Formula: see text] has finite order, it was shown in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] that [Formula: see text] is commuting, that is, [Formula: see text], all [Formula: see text]. Posed in [M. Chacron, Antiautomorphisms with quasi-generalised Engel condition, J. Algebra Appl. 17(8) (2018) 1850145 (19 pages)] is the question which asks as to whether the finite order requirement on [Formula: see text] can be dropped. We provide here an affirmative answer to the question. The second major result of this paper is concerned with a nonnecessarily algebraic division ring [Formula: see text] with an antiautomorphism [Formula: see text] satisfying the stronger condition (ii) [Formula: see text], all [Formula: see text], where [Formula: see text] and [Formula: see text] are fixed positive integers. It was shown in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036] that if, further, [Formula: see text] has finite order then [Formula: see text] is commuting. We show here, that again the finite order assumption on [Formula: see text] can be lifted answering thus in the affirmative the open question (see Question 2.11 in [T.-K. Lee, Anti-automorphisms satisfying an Engel condition, Comm. Algebra 45(9) (2017) 4030–4036]).


Award of Medals 1958 The Copley Medal is awarded to Professor J. E. Littlewood, F. R. S. At the present time J. E. Littlewood is, by general agreement among mathematicians, by far the most eminent pure mathematician in this country. His papers contain deep and difficult solutions of important problems, and have opened new fields for investigation. The papers on the minimum modulus of integral functions of finite order (1908) led the way to further developments including a major problem only recently solved. The Tauberian theorem for powers series (1915) was an important step forward from Tauber’s original theorem and even from Hardy’s Tauberian theorem for Cesaro summation, and might be regarded as the true beginning of what is now recognized as an independent subject, Tauberian theorems.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850145 ◽  
Author(s):  
M. Chacron

Let [Formula: see text] be a ring with 1. Given elements [Formula: see text], [Formula: see text] of [Formula: see text] and the integer [Formula: see text] define [Formula: see text] and [Formula: see text]. We say that a given antiautomorphism [Formula: see text] of [Formula: see text] is commuting if [Formula: see text], all [Formula: see text]. More generally, assume that [Formula: see text] satisfies the condition [Formula: see text] where [Formula: see text], [Formula: see text] are corresponding positive integers depending on [Formula: see text], and [Formula: see text] ranges over [Formula: see text]. To what extent can one say that [Formula: see text] is commuting? In this paper, we answer the question in the affirmative if R is a prime ring containing some idempotent element [Formula: see text]. In the diametrically opposed case in which [Formula: see text] is a division ring the answer is again yes provided [Formula: see text] is algebraic over its center and [Formula: see text] is of finite order. These two major complementary results will be put to work to provide an answer to the general question.


1955 ◽  
Vol 7 ◽  
pp. 24-34 ◽  
Author(s):  
K. D. Fryer

In (1), using the theory of group representations, Brauer studied groups of finite order g containing elements A of prime period p which commute only with their own powers Ai. If is a p-Sylow subgroup of , the normalizer can be generated by A and another element B such that1.1,where ϒ is a primitive root (mod p), and t and q are positive integers such that1.2 tq = p − 1.


2021 ◽  
Vol 7 (2) ◽  
pp. 1907-1924
Author(s):  
Wenju Tang ◽  
◽  
Keyu Zhang ◽  
Hongyan Xu ◽  
◽  
...  

<abstract><p>This article is concerned with the existence of entire solutions for the following complex second order partial differential-difference equation</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left(\frac{\partial^2 f(z_1, z_2)}{\partial z_1^2}+\frac{\partial^2 f(z_1, z_2)}{\partial z_2^2}\right)^{l}+f(z_1+c_1, z_2+c_2)^{k} = 1, $\end{document} </tex-math></disp-formula></p> <p>where $ c_1, c_2 $ are constants in $ \mathbb{C} $ and $ k, l $ are positive integers. In addition, we also investigate the forms of finite order transcendental entire solutions for several complex second order partial differential-difference equations of Fermat type, and obtain some theorems about the existence and the forms of solutions for the above equations. Meantime, we give some examples to explain the existence of solutions for some theorems in some cases. Our results are some generalizations of the previous theorems given by Qi <sup>[<xref ref-type="bibr" rid="b23">23</xref>]</sup>, Xu and Cao <sup>[<xref ref-type="bibr" rid="b35">35</xref>]</sup>, Liu, Cao and Cao <sup>[<xref ref-type="bibr" rid="b17">17</xref>]</sup>.</p></abstract>


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


Author(s):  
Ümit Totur

Abstract In this paper we generalize some classical Tauberian theorems for single sequences to double sequences. One-sided Tauberian theorem and generalized Littlewood theorem for (C; 1; 1) summability method are given as corollaries of the main results. Mathematics Subject Classification 2010: 40E05, 40G0


2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2014 ◽  
Vol 58 (1) ◽  
pp. 13-22
Author(s):  
Roman Wituła ◽  
Edyta Hetmaniok ◽  
Damian Słota

Abstract In the paper we present the selected properties of composition relation of the convergent and divergent permutations connected with commutation. We note that a permutation on ℕ is called the convergent permutation if for each convergent series ∑an of real terms, the p-rearranged series ∑ap(n) is also convergent. All the other permutations on ℕ are called the divergent permutations. We have proven, among others, that, for many permutations p on ℕ, the family of divergent permutations q on ℕ commuting with p possesses cardinality of the continuum. For example, the permutations p on ℕ having finite order possess this property. On the other hand, an example of a convergent permutation which commutes only with some convergent permutations is also presented.


2016 ◽  
Author(s):  
David Barner

Perceptual representations – e.g., of objects or approximate magnitudes –are often invoked as building blocks that children combine with linguisticsymbols when they acquire the positive integers. Systems of numericalperception are either assumed to contain the logical foundations ofarithmetic innately, or to supply the basis for their induction. Here Ipropose an alternative to this general framework, and argue that theintegers are not learned from perceptual systems, but instead arise toexplain perception as part of language acquisition. Drawing oncross-linguistic data and developmental data, I show that small numbers(1-4) and large numbers (~5+) arise both historically and in individualchildren via entirely distinct mechanisms, constituting independentlearning problems, neither of which begins with perceptual building blocks.Specifically, I propose that children begin by learning small numbers(i.e., *one, two, three*) using the same logical resources that supportother linguistic markers of number (e.g., singular, plural). Several yearslater, children discover the logic of counting by inferring the logicalrelations between larger number words from their roles in blind countingprocedures, and only incidentally associate number words with perception ofapproximate magnitudes, in an *ad hoc* and highly malleable fashion.Counting provides a form of explanation for perception but is not causallyderived from perceptual systems.


Sign in / Sign up

Export Citation Format

Share Document