The Monte Carlo solution of some integral equations

Author(s):  
E. S. Page ◽  
D. R. Cox

ABSTRACTEstimators are given for the solution by Monte Carlo methods of the Fredholm integral equation of the second kind and the variances of the estimators are compared. Two integral equations arising in sequential analysis are considered in detail; some numerical examples are given.

2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Meilan Sun ◽  
Chuanqing Gu

The function-valued Padé-type approximation (2DFPTA) is used to solve two-dimensional Fredholm integral equation of the second kind. In order to compute 2DFPTA, a triangle recursive algorithm based on Sylvester identity is proposed. The advantage of this algorithm is that, in the process of calculating 2DFPTA to avoid the calculation of the determinant, it can start from the initial value, from low to high order, and gradually proceeds. Compared with the original two methods, the numerical examples show that the algorithm is effective.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
F. Ghomanjani ◽  
M. H. Farahi ◽  
A. Kılıçman

The Bezier curves are presented to estimate the solution of the linear Fredholm integral equation of the second kind. A direct algorithm for solving this problem is given. We have chosen the Bezier curves as piecewise polynomials of degreenand determine Bezier curves on [0, 1] byn+1control points. Numerical examples illustrate that the algorithm is applicable and very easy to use.


2010 ◽  
Vol 2 (2) ◽  
pp. 264-272 ◽  
Author(s):  
A. Shirin ◽  
M. S. Islam

In this paper, Bernstein piecewise polynomials are used to solve the integral equations numerically. A matrix formulation is given for a non-singular linear Fredholm Integral Equation by the technique of Galerkin method. In the Galerkin method, the Bernstein polynomials are used as the approximation of basis functions. Examples are considered to verify the effectiveness of the proposed derivations, and the numerical solutions guarantee the desired accuracy.  Keywords: Fredholm integral equation; Galerkin method; Bernstein polynomials. © 2010 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. DOI: 10.3329/jsr.v2i2.4483               J. Sci. Res. 2 (2), 264-272 (2010) 


Author(s):  
M. Tahami ◽  
A. Askari Hemmat ◽  
S. A. Yousefi

In one-dimensional problems, the Legendre wavelets are good candidates for approximation. In this paper, we present a numerical method for solving two-dimensional first kind Fredholm integral equation. The method is based upon two-dimensional linear Legendre wavelet basis approximation. By applying tensor product of one-dimensional linear Legendre wavelet we construct a two-dimensional wavelet. Finally, we give some numerical examples.


Author(s):  
S. ABBASBANDY ◽  
T. ALLAHVIRANLOO

In this work, the Adomian decomposition(AD) method is applied to the Fuzzy system of linear Fredholm integral equations of the second kind(FFIE). First the crisp Fredholm integral equation is solved by AD method and then the crisp solution is fuzzified by extension principle. The proposed algorithm is illustrated by solving a numerical example.


1969 ◽  
Vol 16 (3) ◽  
pp. 185-194 ◽  
Author(s):  
V. Hutson

Consider the Fredholm equation of the second kindwhereand Jv is the Bessel function of the first kind. Here ka(t) and h(x) are given, the unknown function is f(x), and the solution is required for large values of the real parameter a. Under reasonable conditions the solution of (1.1) is given by its Neumann series (a set of sufficient conditions on ka(t) for the convergence of this series is given in Section 4, Lemma 2). However, in many applications the convergence of the series becomes too slow as a→∞ for any useful results to be obtained from it, and it may even happen that f(x)→∞ as a→∞. It is the aim of the present investigation to consider this case, and to show how under fairly general conditions on ka(t) an approximate solution may be obtained for large a, the approximation being valid in the norm of L2(0, 1). The exact conditions on ka(t) and the main result are given in Section 4. Roughly, it is required that 1 -ka(at) should behave like tp(p>0) as t→0. For example, ka(at) might be exp ⌈-(t/ap)⌉.


2008 ◽  
Vol 2008 ◽  
pp. 1-12
Author(s):  
B. M. Singh ◽  
J. Rokne ◽  
R. S. Dhaliwal

A method is developed for solutions of two sets of triple integral equations involving associated Legendre functions of imaginary arguments. The solution of each set of triple integral equations involving associated Legendre functions is reduced to a Fredholm integral equation of the second kind which can be solved numerically.


Author(s):  
R. P. Srivastav

SynopsisThe methods developed in I, II of this series of papers are applied to a solution of a variety of dual series relations involving trigonometric series. In general the problem is reduced to one of solving (usually by numerical methods) a Fredholm integral equation of the second kind for an auxiliary function g(t), but for certain values of the parameters it is possible to obtain analytical solutions of the integral equations and these cases are considered in detail.


2021 ◽  
Vol 1 (4) ◽  
pp. 1-7
Author(s):  
Vladimir Uskov

The article is devoted to the study of a system of two inhomogeneous Fredholm integral equations of the first kind with two required functions depending on one variable. Integral equations describe the restoration of a blurred image, production costs, etc. Fredholm integral equations with one desired function have been considered in many works, but relatively few works have been devoted to systems of such equations. The questions of stability for the solution of systems and the construction of a regularizing system of equations were investigated, but the solution was not constructed in an explicit form. In this paper, the kernels depend on two variables. The case is considered: in the kernels and inhomogeneities, the variables are separated in the equations; these functions are decomposed on the basis of two functions on the interval of integration. Examples of basic functions are given. A condition is determined under which the system has a unique solution in the chosen basis, formulated as a theorem. The solution is found in the form of an expansion in this basis. To illustrate the results obtained, an example is considered


Sign in / Sign up

Export Citation Format

Share Document