Extensions of the Hájek–Rényi inequality to moments of higher order

Author(s):  
J. E. A. Dunnage

1. Introduction. Bernoulli trials. Consider a sequence of Bernoulli trials. Let p, assumed to satisfy 0<p < 1, be the probability of success at any given trial and let q = 1–p. If Nn is the number of successes in the first n trials, it is well known that Nn/n→p almost surely as n→∞ so that for every ∈> 0,as n→∞, and it is clearly of great interest to know quantitatively how this probability depends upon n and ∈.

Author(s):  
H. S. Kim ◽  
S. S. Sheinin

The importance of image simulation in interpreting experimental lattice images is well established. Normally, in carrying out the required theoretical calculations, only zero order Laue zone reflections are taken into account. In this paper we assess the conditions for which this procedure is valid and indicate circumstances in which higher order Laue zone reflections may be important. Our work is based on an analysis of the requirements for obtaining structure images i.e. images directly related to the projected potential. In the considerations to follow, the Bloch wave formulation of the dynamical theory has been used.The intensity in a lattice image can be obtained from the total wave function at the image plane is given by: where ϕg(z) is the diffracted beam amplitide given by In these equations,the z direction is perpendicular to the entrance surface, g is a reciprocal lattice vector, the Cg(i) are Fourier coefficients in the expression for a Bloch wave, b(i), X(i) is the Bloch wave excitation coefficient, ϒ(i)=k(i)-K, k(i) is a Bloch wave vector, K is the electron wave vector after correction for the mean inner potential of the crystal, T(q) and D(q) are the transfer function and damping function respectively, q is a scattering vector and the summation is over i=l,N where N is the number of beams taken into account.


1962 ◽  
Vol 14 ◽  
pp. 565-567 ◽  
Author(s):  
P. J. McCarthy

The Bernoulli polynomials of order k, where k is a positive integer, are defined byBm(k)(x) is a polynomial of degree m with rational coefficients, and the constant term of Bm(k)(x) is the mth Bernoulli number of order k, Bm(k). In a previous paper (3) we obtained some conditions, in terms of k and m, which imply that Bm(k)(x) is irreducible (all references to irreducibility will be with respect to the field of rational numbers). In particular, we obtained the following two results.


1991 ◽  
Vol 56 (3) ◽  
pp. 964-973 ◽  
Author(s):  
Jaap van Oosten

AbstractF. Richman raised the question of whether the following principle of second order arithmetic is valid in intuitionistic higher order arithmetic HAH:and if not, whether assuming Church's Thesis CT and Markov's Principle MP would help. Blass and Scedrov gave models of HAH in which this principle, which we call RP, is not valid, but their models do not satisfy either CT or MP.In this paper a realizability topos Lif is constructed in which CT and MP hold, but RP is false. (It is shown, however, that RP is derivable in HAH + CT + MP + ECT0, so RP holds in the effective topos.) Lif is a generalization of a realizability notion invented by V. Lifschitz. Furthermore, Lif is a subtopos of the effective topos.


Author(s):  
R. Alicandro ◽  
M. S. Gelli

We provide an approximation of some free discontinuity problems by local functionals with a singular perturbation of higher order. More precisely, we study the limiting behaviour of energies of the form where Hu denotes the Hessian matrix of u.


1971 ◽  
Vol 70 (2) ◽  
pp. 257-262
Author(s):  
Dale W. Swann

Let K(s, t) be a complex-valued L2 kernel on the square ⋜ s, t ⋜ by which we meanand let {λν}, perhaps empty, be the set of finite characteristic values (f.c.v.) of K(s, t), i.e. complex numbers with which there are associated non-trivial L2 functions øν(s) satisfyingFor such kernels, the iterated kernels,are well-defined (1), as are the higher order tracesCarleman(2) showed that the f.c.v. of K are the zeros of the modified Fredhoim determinantthe latter expression holding only for |λ| sufficiently small (3). The δn in (3) may be calculated, at least in theory, by well-known formulae involving the higher order traces (1). For our later analysis of this case, we define and , respectively, as the minimum and maximum moduli of the zeros of , the nth section of D*(K, λ).


1948 ◽  
Vol 8 (2) ◽  
pp. 89-94 ◽  
Author(s):  
H. A. Buchdahl

Einstein's fundamental equations of the gravitational field arewhere Tμν are the components of the energy tensor and λ is the cosmical constant. In empty space these equations becomewhich may be reduced tosince G = 4λ, by contraction of (2).


2013 ◽  
Vol 155 (2) ◽  
pp. 375-377
Author(s):  
LUIS J. ALÍAS ◽  
DEBORA IMPERA ◽  
MARCO RIGOLI

The proof of Corollary 4⋅3 in our paper [1] is not correct because there is a mistake in the expression given for ∥X* ∧ Y*∥2 on page 374. In fact, the correct expression for this term is \begin{eqnarray*} \norm{X^*\wedge Y^*}^2 & = & \norm{X^*}^2\norm{Y^*}^2-\pair{X^*,Y^*}^2\\ {} & = & 1+\pair{X,T}^2+\pair{Y,T}^2\geq 1, \end{eqnarray*} and then the inequality (4⋅9) is no longer true. Observe that all the previous reasoning before the wrong expression for ∥X* ∧ Y*∥2 is correct.


1964 ◽  
Vol 60 (3) ◽  
pp. 409-420 ◽  
Author(s):  
C. R. F. Maunder

In this paper, we shall prove a result which identifies the differentials in the Adams spectral sequence (see (1,2)) with certain cohomology operations of higher kinds, in the sense of (4). This theorem will be stated precisely at the end of section 2, after a summary of the necessary information about the Adams spectral sequence and higher-order cohomology operations; the proof will follow in section 3. Finally, in section 4, we shall consider, by way of example, the Adams spectral sequence for the stable homotopy groups of spheres: we show how our theorem gives a proof of Liulevicius's result that , where the elements hn (n ≥ 0) are base elements ofcorresponding to the elements Sq2n in A, the mod 2 Steenrod algebra.


Sign in / Sign up

Export Citation Format

Share Document