bloch wave
Recently Published Documents


TOTAL DOCUMENTS

321
(FIVE YEARS 44)

H-INDEX

28
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Na Hyun Jo ◽  
Yun Wu ◽  
Thaís V. Trevisan ◽  
Lin-Lin Wang ◽  
Kyungchan Lee ◽  
...  

AbstractElectrons navigate more easily in a background of ordered magnetic moments than around randomly oriented ones. This fundamental quantum mechanical principle is due to their Bloch wave nature and also underlies ballistic electronic motion in a perfect crystal. As a result, a paramagnetic metal that develops ferromagnetic order often experiences a sharp drop in the resistivity. Despite the universality of this phenomenon, a direct observation of the impact of ferromagnetic order on the electronic quasiparticles in a magnetic metal is still lacking. Here we demonstrate that quasiparticles experience a significant enhancement of their lifetime in the ferromagnetic state of the low-density magnetic semimetal EuCd2As2, but this occurs only in selected bands and specific energy ranges. This is a direct consequence of the magnetically induced band splitting and the multi-orbital nature of the material. Our detailed study allows to disentangle different electronic scattering mechanisms due to non-magnetic disorder and magnon exchange. Such high momentum and energy dependence quasiparticle lifetime enhancement can lead to spin selective transport and potential spintronic applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Li Zhang ◽  
Yihao Yang ◽  
Yong Ge ◽  
Yi-Jun Guan ◽  
Qiaolu Chen ◽  
...  

AbstractThe recently discovered non-Hermitian skin effect (NHSE) manifests the breakdown of current classification of topological phases in energy-nonconservative systems, and necessitates the introduction of non-Hermitian band topology. So far, all NHSE observations are based on one type of non-Hermitian band topology, in which the complex energy spectrum winds along a closed loop. As recently characterized along a synthetic dimension on a photonic platform, non-Hermitian band topology can exhibit almost arbitrary windings in momentum space, but their actual phenomena in real physical systems remain unclear. Here, we report the experimental realization of NHSE in a one-dimensional (1D) non-reciprocal acoustic crystal. With direct acoustic measurement, we demonstrate that a twisted winding, whose topology consists of two oppositely oriented loops in contact rather than a single loop, will dramatically change the NHSE, following previous predictions of unique features such as the bipolar localization and the Bloch point for a Bloch-wave-like extended state. This work reveals previously unnoticed features of NHSE, and provides the observation of physical phenomena originating from complex non-Hermitian winding topology.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Peng Yang ◽  
Xin Li ◽  
Yu Tian

Abstract The instability of superfluids in optical lattice has been investigated using the holographic model. The static and steady flow solutions are numerically obtained from the static equations of motion and the solutions are described as Bloch waves with different Bloch wave vector k. Based on these Bloch waves, the instability is investigated at two levels. At the linear perturbation level, we show that there is a critical kc above which the superflow is unstable. At the fully nonlinear level, the intermediate state and final state of unstable superflow are identified through numerical simulation of the full equations of motion. The results show that during the time evolution, the unstable superflow will undergo a chaotic state with soliton generation. The system will settle down to a stable state with k < kc eventually, with a smaller current and a larger condensate.


Author(s):  
Agnes Lamacz-Keymling ◽  
Irwin Yousept

This article examines a linear-quadratic elliptic optimal control problem in which the cost functional and the state equation involve a highly oscillatory periodic coefficient $A^\eps$. The small parameter $\eps>0$ denotes the periodicity length. We propose a high-order effective control problem with constant coefficients that provides an approximation of the original one with error $O(\eps^M)$, where $M\in\N$ is as large as one likes. Our analysis relies on a Bloch wave expansion of the optimal solution and is performed in two steps. In the first step, we expand the lowest Bloch eigenvalue in a Taylor series to obtain a high-order effective optimal control problem. In the second step, the original and the effective problem are rewritten in terms of the Bloch and the Fourier transform, respectively. This allows for a direct comparison of the optimal control problems via the corresponding variational inequalities, leading to our main theoretical result on the high-oder approximation.


Author(s):  
Guillaume Jean Jacques Fournier ◽  
Maximilian Meindl ◽  
Camilo Silva ◽  
Giulio Ghirardo ◽  
Mirko R. Bothien ◽  
...  

Abstract Heavy-duty land-based gas turbines are often designed with can-annular combustors, which consist of a set of identical cans, acoustically connected on the upstream side via the compressor plenum, and, downstream, with a small annular gap located at the transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-valued equivalent outlet reflection coefficient, which models the annular gap. The present study reviews existing low-order models based purely on geometrical parameters and compares them to 2D Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus is not suited for can-annular combustors and that the Rayleigh conductivity model only gives qualitative agreement. We then propose an extension for the equivalent reflection coefficient that accounts not only for geometrical but also flow parameters, by means of a characteristic length. The proposed model is in excellent agreement with 2D simulations and is able to correctly capture the eigenfrequencies of the system. We then perform a Design of Experiments study that allows us to explore various configurations and build correlations for the characteristic length. Finally, we discuss the validity limits of the proposed low-order modeling approach.


Author(s):  
Javier Segurado ◽  
Ricardo A. Lebensohn

AbstractA method based on the Fast Fourier Transform is proposed to obtain the dispersion relation of acoustic waves in heterogeneous periodic media with arbitrary microstructures. The microstructure is explicitly considered using a voxelized Representative Volume Element (RVE). The dispersion diagram is obtained solving an eigenvalue problem for Bloch waves in Fourier space. To this aim, two linear operators representing stiffness and mass are defined through the use of differential operators in Fourier space. The smallest eigenvalues are obtained using the implicitly restarted Lanczos and the subspace iteration methods, and the required inverse of the stiffness operator is done using the conjugate gradient with a preconditioner. The method is used to study the propagation of acoustic waves in elastic polycrystals, showing the strong effect of crystal anistropy and polycrystaline texture on the propagation. It is shown that the method combines the simplicity of classical Fourier series analysis with the versatility of Finite Elements to account for complex geometries proving an efficient and general approach which allows the use of large RVEs in 3D.


2021 ◽  
Author(s):  
Guillaume J. J. Fournier ◽  
Max Meindl ◽  
Camilo F. Silva ◽  
Giulio Ghirardo ◽  
Mirko R. Bothien ◽  
...  

Abstract Heavy-duty land-based gas turbines are often designed with can-annular combustors, which consist of a set of identical cans, acoustically connected on the upstream side via the compressor plenum, and, downstream, with a small annular gap located at the transition with the first turbine stage. The modeling of this cross-talk area is crucial to predict the thermo-acoustic modes of the system. Thanks to the discrete rotational symmetry, Bloch wave theory can be exploited to reduce the system to a longitudinal combustor with a complex-valued equivalent outlet reflection coefficient, which models the annular gap. The present study reviews existing low-order models based purely on geometrical parameters and compares them to 2D Helmholtz simulations. We demonstrate that the modeling of the gap as a thin annulus is not suited for can-annular combustors and that the Rayleigh conductivity model only gives qualitative agreement. We then propose an extension for the equivalent reflection coefficient that accounts not only for geometrical but also flow parameters, by means of a characteristic length. The proposed model is in excellent agreement with 2D simulations and is able to correctly capture the eigenfrequencies of the system. We then perform a Design of Experiments study that allows us to explore various configurations and build correlations for the characteristic length. Finally, we discuss the validity limits of the proposed low-order modeling approach.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


Sign in / Sign up

Export Citation Format

Share Document