Stochastic bounds for the queue GI/G/1 in heavy traffic

1978 ◽  
Vol 84 (2) ◽  
pp. 361-375 ◽  
Author(s):  
Julian Köllerström

It is often of greater practical value to have results about queueing theory which involve probabilities rather than characteristic functions. To quote Kendall (4), section 5, ‘These results of Prabhu, further exploited by himself and Takács, are rapidly raising the Laplacian curtain which has hitherto obscured much of the details of the queue-theoretic scene’. In this paper we derive the exponential limit formula for the equilibrium waiting time distribution function G, for the queue GI/G/1 in heavy traffic, using stochastic bounds which are asymptotically sharp as the traffic intensity (defined below) increases to unity (which has not been done before to the author's knowledge). This formula was derived by Kingman (5), (6) and (9), using characteristic functions, who, in section 9 of the latter paper, stressed the need for improving the precision of the approximation ‘by giving inequalities, bounds for errors, and generally by setting the theory on a more elegant and rigorous basis’. Kingman (6) and (9) also sketched a proof of the same result using a Brownian approximation, which was done in detail by Viskov (18); but here again the same difficulties are present in practical interpretation, error bounds etc.

1979 ◽  
Vol 16 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Julian Köllerström

The queues being studied here are of the type GI/G/k in statistical equilibrium (with traffic intensity less than one). The exponential limiting formula for the waiting time distribution function in heavy traffic, conjectured by Kingman (1965) and established by Köllerström (1974), is extended here. The asymptotic properties of the moments are investigated as well as further approximations for the characteristic function and error bounds for the limiting foemulae.


1979 ◽  
Vol 16 (02) ◽  
pp. 393-401 ◽  
Author(s):  
Julian Köllerström

The queues being studied here are of the type GI/G/k in statistical equilibrium (with traffic intensity less than one). The exponential limiting formula for the waiting time distribution function in heavy traffic, conjectured by Kingman (1965) and established by Köllerström (1974), is extended here. The asymptotic properties of the moments are investigated as well as further approximations for the characteristic function and error bounds for the limiting foemulae.


2012 ◽  
Vol 26 (23) ◽  
pp. 1250151 ◽  
Author(s):  
KWOK SAU FA

In this paper, we model the tick-by-tick dynamics of markets by using the continuous-time random walk (CTRW) model. We employ a sum of products of power law and stretched exponential functions for the waiting time probability distribution function; this function can fit well the waiting time distribution for BUND futures traded at LIFFE in 1997.


2002 ◽  
Vol 39 (03) ◽  
pp. 619-629 ◽  
Author(s):  
Gang Uk Hwang ◽  
Bong Dae Choi ◽  
Jae-Kyoon Kim

We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.


2015 ◽  
Vol 47 (04) ◽  
pp. 989-1014 ◽  
Author(s):  
P. Vis ◽  
R. Bekker ◽  
R. D. van der Mei

We study cyclic polling models with exhaustive service at each queue under a variety of non-FCFS (first-come-first-served) local service orders, namely last-come-first-served with and without preemption, random-order-of-service, processor sharing, the multi-class priority scheduling with and without preemption, shortest-job-first, and the shortest remaining processing time policy. For each of these policies, we first express the waiting-time distributions in terms of intervisit-time distributions. Next, we use these expressions to derive the asymptotic waiting-time distributions under heavy-traffic assumptions, i.e. when the system tends to saturate. The results show that in all cases the asymptotic waiting-time distribution at queueiis fully characterized and of the form Γ Θi, with Γ and Θiindependent, and where Γ is gamma distributed with known parameters (and the same for all scheduling policies). We derive the distribution of the random variable Θiwhich explicitly expresses the impact of the local service order on the asymptotic waiting-time distribution. The results provide new fundamental insight into the impact of the local scheduling policy on the performance of a general class of polling models. The asymptotic results suggest simple closed-form approximations for the complete waiting-time distributions for stable systems with arbitrary load values.


Author(s):  
J. Köllerström

Various elegant properties have been found for the waiting time distribution G for the queue GI/G/1 in statistical equilibrium, such as infinite divisibility ((1), p. 282) and that of having an exponential tail ((11), (2), p. 411, (1), p. 324). Here we derive another property which holds quite generally, provided the traffic intensity ρ < 1, and which is extremely simple, fitting in with the above results as well as yielding some useful properties in the form of upper and lower stochastic bounds for G which augment the bounds obtained by Kingman (5), (6), (8) and by Ross (10).


1976 ◽  
Vol 13 (2) ◽  
pp. 411-417 ◽  
Author(s):  
R. Bergmann ◽  
D. Stoyan

Exponential bounds for the stationary waiting-time distribution of the type ae–θt are considered. These bounds are obtained by the use of Kingman's method of ‘integral inequalities’. Approximations of Θ and a are given which are useful especially if the service and/or inter-arrival time distribution functions are NBUE or NWUE.


Sign in / Sign up

Export Citation Format

Share Document