asymptotic decay rate
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 0)

H-INDEX

7
(FIVE YEARS 0)

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Nicolae Dumitru Alexandru ◽  
Felix Diaconu

An explanation is proposed for the improved behavior of the improved Nyquist pulses with an asymptotic decay rate of t-2 when sampled with a timing offset. Three figures of merit that indicate the energy distribution into the sidelobes of the time response and allow a quick assessment of their performance in terms of error probability when the impulse response is sampled with a timing error have been proposed and verified on several improved Nyquist pulses reported in the literature. In order to check the validity of the proposed figures of merit a novel family of Nyquist pulses denoted as power sine was introduced. Using the proposed approach the design process was expedited as the volume of necessary calculations was significantly decreased. To explain the difference in close pulse performance a figure of merit based on limited ISI distortion was introduced.


2008 ◽  
Vol 18 (04) ◽  
pp. 511-541 ◽  
Author(s):  
WENLIANG GAO ◽  
CHANGJIANG ZHU

In this paper, we consider the asymptotic decay rate towards the planar rarefaction waves to the Cauchy problem for a hyperbolic–elliptic coupled system called as a model system of the radiating gas in two dimensions. The analysis based on the standard L2-energy method, L1-estimate and the monotonicity of profile obtained by the maximum principle.


2005 ◽  
Vol 19 (3) ◽  
pp. 351-361 ◽  
Author(s):  
M. Mandjes ◽  
M. Nuyens

The asymptotic decay rate of the sojourn time of a customer in the stationary M/G/1 queue under the foreground–background (FB) service discipline is studied. The FB discipline gives service to those customers that have received the least service so far. We prove that for light-tailed service times, the decay rate of the sojourn time is equal to the decay rate of the busy period. It is shown that FB minimizes the decay rate in the class of work-conserving disciplines.


2003 ◽  
Vol 40 (02) ◽  
pp. 273-292
Author(s):  
J. Xue ◽  
Attahiru Sule Alfa

This paper considers the asymptotic tail distribution of the number of cells queued in a statistical multiplexer fed with homogeneous generalized binary Markov sources. As the asymptotic decay rate is easy to obtain, we focus our effort on bounding the asymptotic constant, which is dependent on the initial phase combination of the sources and is hard to compute even for a moderate number of sources. We derive upper and lower bounds for the asymptotic constant, taking the initial phase combination into account. Numerical experiments show the accuracy of these bounds. They also show that, while the asymptotic decay rates are the same, the variation of initial phase combination of the sources may significantly affect the asymptotic constants.


2003 ◽  
Vol 40 (02) ◽  
pp. 273-292
Author(s):  
J. Xue ◽  
Attahiru Sule Alfa

This paper considers the asymptotic tail distribution of the number of cells queued in a statistical multiplexer fed with homogeneous generalized binary Markov sources. As the asymptotic decay rate is easy to obtain, we focus our effort on bounding the asymptotic constant, which is dependent on the initial phase combination of the sources and is hard to compute even for a moderate number of sources. We derive upper and lower bounds for the asymptotic constant, taking the initial phase combination into account. Numerical experiments show the accuracy of these bounds. They also show that, while the asymptotic decay rates are the same, the variation of initial phase combination of the sources may significantly affect the asymptotic constants.


2002 ◽  
Vol 39 (03) ◽  
pp. 619-629 ◽  
Author(s):  
Gang Uk Hwang ◽  
Bong Dae Choi ◽  
Jae-Kyoon Kim

We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.


2002 ◽  
Vol 39 (3) ◽  
pp. 619-629 ◽  
Author(s):  
Gang Uk Hwang ◽  
Bong Dae Choi ◽  
Jae-Kyoon Kim

We consider a discrete-time queueing system with the discrete autoregressive process of order 1 (DAR(1)) as an input process and obtain the actual waiting time distribution and the virtual waiting time distribution. As shown in the analysis, our approach provides a natural numerical algorithm to compute the waiting time distributions, based on the theory of the GI/G/1 queue, and consequently we can easily investigate the effect of the parameters of the DAR(1) on the waiting time distributions. We also derive a simple approximation of the asymptotic decay rate of the tail probabilities for the virtual waiting time in the heavy traffic case.


1996 ◽  
Vol 33 (3) ◽  
pp. 840-857 ◽  
Author(s):  
N. G. Duffield

We analyse the queue QL at a multiplexer with L sources which may display long-range dependence. This includes, for example, sources modelled by fractional Brownian motion (FBM). The workload processes W due to each source are assumed to have large deviation properties of the form P[Wt/a(t) > x] ≈ exp[– v(t)K(x)] for appropriate scaling functions a and v, and rate-function K. Under very general conditions limL→xL–1 log P[QL > Lb] = – I(b), provided the offered load is held constant, where the shape function I is expressed in terms of the cumulant generating functions of the input traffic. For power-law scalings v(t) = tv, a(t) = ta (such as occur in FBM) we analyse the asymptotics of the shape function limb→xb–u/a(I(b) – δbv/a) = vu for some exponent u and constant v depending on the sources. This demonstrates the economies of scale available though the multiplexing of a large number of such sources, by comparison with a simple approximation P[QL > Lb] ≈ exp[−δLbv/a] based on the asymptotic decay rate δ alone. We apply this formula to Gaussian processes, in particular FBM, both alone, and also perturbed by an Ornstein–Uhlenbeck process. This demonstrates a richer potential structure than occurs for sources with linear large deviation scalings.


1996 ◽  
Vol 33 (03) ◽  
pp. 840-857 ◽  
Author(s):  
N. G. Duffield

We analyse the queue QL at a multiplexer with L sources which may display long-range dependence. This includes, for example, sources modelled by fractional Brownian motion (FBM). The workload processes W due to each source are assumed to have large deviation properties of the form P[W t/a(t) > x] ≈ exp[– v(t)K(x)] for appropriate scaling functions a and v, and rate-function K. Under very general conditions lim L→x L –1 log P[QL > Lb] = – I(b), provided the offered load is held constant, where the shape function I is expressed in terms of the cumulant generating functions of the input traffic. For power-law scalings v(t) = tv, a(t) = ta (such as occur in FBM) we analyse the asymptotics of the shape function lim b→x b –u/a (I(b) – δbv/a ) = vu for some exponent u and constant v depending on the sources. This demonstrates the economies of scale available though the multiplexing of a large number of such sources, by comparison with a simple approximation P[QL > Lb] ≈ exp[−δLbv/a ] based on the asymptotic decay rate δ alone. We apply this formula to Gaussian processes, in particular FBM, both alone, and also perturbed by an Ornstein–Uhlenbeck process. This demonstrates a richer potential structure than occurs for sources with linear large deviation scalings.


Sign in / Sign up

Export Citation Format

Share Document