Large correlated families of positive random variables

1988 ◽  
Vol 103 (1) ◽  
pp. 147-162 ◽  
Author(s):  
D. H. Fremlin

S. Argyros and N. Kalamidas([l], repeated in [2], Theorem 6·15) proved the following. If κ is a cardinal of uncountable cofinality, and 〈Eξ〉ξ<κ is a family of measurable sets in a probability space (X, μ) such that infξ<κμEξ = δ, and if n ≥ 1, , then there is a set Γ ⊆ κ such that #(Γ) = κ and μ(∩ξ∈IEξ) ≥ γ whenever I ⊆ ξ has n members. In Proposition 7 below I refine this result by (i) taking any γ < δn (which is best possible) and (ii) extending the result to infinite cardinals of countable cofinality, thereby removing what turns out to be an irrelevant restriction. The proof makes it natural to perform a further extension to general uniformly bounded families of non-negative measurable functions in place of characteristic functions.

1979 ◽  
Vol 86 (1) ◽  
pp. 103-114
Author(s):  
Wulf Driessler ◽  
Ivan F. Wilde

AbstractFor a family {Xα} of random variables over a probability space , stochastic independence can be formulated in terms of factorization properties of characteristic functions. This idea is reformulated for a family {Aα} of selfadjoint operators over a probability gage space and is shown to be inappropriate as a non-commutative generalization. Indeed, such factorization properties imply that the {Aα} mutually commute and are versions of independent random variables in the usual sense.


1991 ◽  
Vol 14 (2) ◽  
pp. 381-384
Author(s):  
Rohan Hemasinha

LetEbe a Banach space, and let(Ω,ℱ,P)be a probability space. IfL1(Ω)contains an isomorphic copy ofL1[0,1]then inLEP(Ω)(1≤P<∞), the closed linear span of every sequence of independent,Evalued mean zero random variables has infinite codimension. IfEis reflexive orB-convex and1<P<∞then the closed(in LEP(Ω))linear span of any family of independent,Evalued, mean zero random variables is super-reflexive.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Xiaochen Ma ◽  
Qunying Wu

In this article, we research some conditions for strong law of large numbers (SLLNs) for weighted sums of extended negatively dependent (END) random variables under sublinear expectation space. Our consequences contain the Kolmogorov strong law of large numbers and the Marcinkiewicz strong law of large numbers for weighted sums of extended negatively dependent random variables. Furthermore, our results extend strong law of large numbers for some sequences of random variables from the traditional probability space to the sublinear expectation space context.


1996 ◽  
Vol 33 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Taizhong Hu

A monotone coupling of order statistics from two sets of independent non-negative random variables Xi, i = 1, ···, n, and Yi, i = 1, ···, n, means that there exist random variables X′i, Y′i, i = 1, ···, n, on a common probability space such that , and a.s. j = 1, ···, n, where X(1) ≦ X(2) ≦ ·· ·≦ X(n) are the order statistics of Xi, i = 1, ···, n (with the corresponding notations for the X′, Y, Y′ sample). In this paper, we study the monotone coupling of order statistics of lifetimes in two multi-unit systems under multivariate imperfect repair. Similar results for a special model due to Ross are also given.


Filomat ◽  
2020 ◽  
Vol 34 (4) ◽  
pp. 1093-1104
Author(s):  
Qunying Wu ◽  
Yuanying Jiang

This paper we study and establish the complete convergence and complete moment convergence theorems under a sub-linear expectation space. As applications, the complete convergence and complete moment convergence for negatively dependent random variables with CV (exp (ln? |X|)) < ?, ? > 1 have been generalized to the sub-linear expectation space context. We extend some complete convergence and complete moment convergence theorems for the traditional probability space to the sub-linear expectation space. Our results generalize corresponding results obtained by Gut and Stadtm?ller (2011), Qiu and Chen (2014) and Wu and Jiang (2016). There is no report on the complete moment convergence under sub-linear expectation, and we provide the method to study this subject.


1976 ◽  
Vol 28 (2) ◽  
pp. 403-407
Author(s):  
A. G. Mucci

Let be an adapted sequence of integrable random variables on the probability space . Let us set .The following result can be immediately derived from Brown [2]:


1970 ◽  
Vol 13 (1) ◽  
pp. 151-152 ◽  
Author(s):  
J. C. Ahuja

Let X1, X2, …, Xn be n independent and identically distributed random variables having the positive binomial probability function1where 0 < p < 1, and T = {1, 2, …, N}. Define their sum as Y=X1 + X2 + … +Xn. The distribution of the random variable Y has been obtained by Malik [2] using the inversion formula for characteristic functions. It appears that his result needs some correction. The purpose of this note is to give an alternative derivation of the distribution of Y by applying one of the results, established by Patil [3], for the generalized power series distribution.


Author(s):  
Mariusz Sudzik

AbstractLet $$(\Omega , \mathcal {F}, \mathbb {P})$$ ( Ω , F , P ) be a probability space and let $$\alpha , \beta : \mathcal {F} \rightarrow ~\mathbb {R}$$ α , β : F → R be random variables. We provide sufficient conditions under which every bounded continuous solution $$\varphi : \mathbb {R} \rightarrow \mathbb {R}$$ φ : R → R of the equation $$ \varphi (x) = \int _{ \Omega } \varphi \left( \alpha (\omega ) (x-\beta (\omega ))\right) \mathbb {P}(d\omega )$$ φ ( x ) = ∫ Ω φ α ( ω ) ( x - β ( ω ) ) P ( d ω ) is constant. We also show that any non-constant bounded continuous solution of the above equation has to be oscillating at infinity.


Sign in / Sign up

Export Citation Format

Share Document