Ratio Limit Theorems

1976 ◽  
Vol 28 (2) ◽  
pp. 403-407
Author(s):  
A. G. Mucci

Let be an adapted sequence of integrable random variables on the probability space . Let us set .The following result can be immediately derived from Brown [2]:

1958 ◽  
Vol 10 ◽  
pp. 222-229 ◽  
Author(s):  
J. R. Blum ◽  
H. Chernoff ◽  
M. Rosenblatt ◽  
H. Teicher

Let {Xn} (n = 1, 2 , …) be a stochastic process. The random variables comprising it or the process itself will be said to be interchangeable if, for any choice of distinct positive integers i 1, i 2, H 3 … , ik, the joint distribution of depends merely on k and is independent of the integers i 1, i 2, … , i k. It was shown by De Finetti (3) that the probability measure for any interchangeable process is a mixture of probability measures of processes each consisting of independent and identically distributed random variables.


1973 ◽  
Vol 16 (2) ◽  
pp. 173-177 ◽  
Author(s):  
D. R. Beuerman

Let Xl,X2,X3, … be a sequence of independent and identically distributed (i.i.d.) random variables which belong to the domain of attraction of a stable law of index α≠1. That is,1whereandwhere L(n) is a function of slow variation; also take S0=0, B0=l.In §2, we are concerned with the weak convergence of the partial sum process to a stable process and the question of centering for stable laws and drift for stable processes.


1975 ◽  
Vol 12 (02) ◽  
pp. 289-297
Author(s):  
Andrew D. Barbour

LetX(t) be a continuous time Markov process on the integers such that, ifσis a time at whichXmakes a jump,X(σ)– X(σ–) is distributed independently ofX(σ–), and has finite meanμand variance. Letq(j) denote the residence time parameter for the statej.Iftndenotes the time of thenth jump andXn≡X(tb), it is easy to deduce limit theorems forfrom those for sums of independent identically distributed random variables. In this paper, it is shown how, forμ> 0 and for suitableq(·), these theorems can be translated into limit theorems forX(t), by using the continuous mapping theorem.


1970 ◽  
Vol 7 (02) ◽  
pp. 432-439 ◽  
Author(s):  
William E. Strawderman ◽  
Paul T. Holmes

Let X 1, X2, X 3 , ··· be independent, identically distributed random variables on a probability space (Ω, F, P); and with a continuous distribution function. Let the sequence of indices {Vr } be defined as Also define The following theorem is due to Renyi [5].


1995 ◽  
Vol 27 (3) ◽  
pp. 652-691 ◽  
Author(s):  
Harry Kesten

We consider positive matrices Q, indexed by {1,2, …}. Assume that there exists a constant 1 L < ∞ and sequences u1< u2< · ·· and d1d2< · ·· such that Q(i, j) = 0 whenever i < ur < ur + L < j or i > dr + L > dr > j for some r. If Q satisfies some additional uniform irreducibility and aperiodicity assumptions, then for s > 0, Q has at most one positive s-harmonic function and at most one s-invariant measure µ. We use this result to show that if Q is also substochastic, then it has the strong ratio limit property, that is for a suitable R and some R–1-harmonic function f and R–1-invariant measure µ. Under additional conditions µ can be taken as a probability measure on {1,2, …} and exists. An example shows that this limit may fail to exist if Q does not satisfy the restrictions imposed above, even though Q may have a minimal normalized quasi-stationary distribution (i.e. a probability measure µ for which R–1µ = µQ).The results have an immediate interpretation for Markov chains on {0,1,2, …} with 0 as an absorbing state. They give ratio limit theorems for such a chain, conditioned on not yet being absorbed at 0 by time n.


Sign in / Sign up

Export Citation Format

Share Document