Varieties and modules with vanishing cohomology

1994 ◽  
Vol 116 (2) ◽  
pp. 245-251 ◽  
Author(s):  
Jon F. Carlson ◽  
Geoffrey R. Robinson

Several years ago the authors, together with Dave Benson, conducted an investigation into the vanishing of cohomology for modules over group algebras [2]. It was mostly in the context of kG-modules where k is a field of finite characteristic p and G is a finite group whose order is divisible by p. Aside from some general considerations, the main results of [2] related the existence of kG-modules M with H*(G, M) = 0 to the structure of the centralizers of the p-elements in G. Specifically it was shown that there exists a non-projective module M in the principal block of kG with H*(G, M) = 0 whenever the centralizer of some p-element of G is not p-nilpotent. The converse was proved in the special case that the prime p is an odd integer (p > 2). In addition there was some suspicion and much speculation about the structure of the varieties of such modules. However, proofs seemed to be waiting for a new idea.

1962 ◽  
Vol 5 (4) ◽  
pp. 158-159 ◽  
Author(s):  
D. A. R. Wallace

Over a field of characteristic p the group algebra of a finite group has a non-trivial radical if and only if the order of the group is divisible by the prime p. It would be of interest to determine the powers of the radical in the non-semi-simple case [2, p. 61]. In the particular case of p-groups the solution to the problem is known through the work of Jennings [6]. We here consider the special case of group algebras whose radicals have square zero and we relate this condition to the structure of the group itself.


2018 ◽  
Vol 235 ◽  
pp. 58-85
Author(s):  
SHIGEO KOSHITANI ◽  
CAROLINE LASSUEUR

Given an odd prime $p$ , we investigate the position of simple modules in the stable Auslander–Reiten quiver of the principal block of a finite group with noncyclic abelian Sylow $p$ -subgroups. In particular, we prove a reduction to finite simple groups. In the case that the characteristic is $3$ , we prove that simple modules in the principal block all lie at the end of their components.


1969 ◽  
Vol 21 ◽  
pp. 1496-1505
Author(s):  
A. J. Douglas

Throughout this paper, S will be a ring (not necessarily commutative) with an identity element ls ≠ 0s. We shall use R to denote a second ring, and ϕ: S→ R will be a fixed ring homomorphism for which ϕ1S = 1R.In (7), Higman generalized the Casimir operator of classical theory and used his generalization to characterize relatively projective and injective modules. As a special case, he obtained a theorem which contains results of Eckmann (3) and of Higman himself (5), and which also includes Gaschütz's generalization (4) of Maschke's theorem. (For a discussion of some of the developments of Maschke's idea of averaging over a finite group, we refer the reader to (2, Chapter IX).) In the present paper, we define the Casimir operator of a family of S-homomorphisms of one R-module into another, and we again use this operator to characterize relatively projective and injective modules.


1965 ◽  
Vol 25 ◽  
pp. 113-120 ◽  
Author(s):  
Akira Hattori

In § 1 of this note we first define the trace of an endomorphism of a projective module P over a non-commutative ring A. Then we call the trace of the identity the rank element r(P) of P, which we shall illustrate by several examples. For a projective module P over the groupalgebra of a finite group G, the rank element of P is essentially the character of G in P. In § 2 we prove that under certain assumption two projective modules Pi and P2 over an algebra over a complete local ring o are isomorphic if and only if their rank elements are identical. This is a type of proposition asserting that two representations are equivalent if and only if their characters are identical, and in fact, when A is the groupalgebra, the above theorem may be considered as another formulation of Swan’s local theorem [9]).


2020 ◽  
Vol 71 (3) ◽  
pp. 1009-1047
Author(s):  
Patrick Le Meur

Abstract Let $R$ be the skew group algebra of a finite group acting on the path algebra of a quiver. This article develops both theoretical and practical methods to do computations in the Morita-reduced algebra associated to $R$. Reiten and Riedtmann proved that there exists an idempotent $e$ of $R$ such that the algebra $eRe$ is both Morita equivalent to $R$ and isomorphic to the path algebra of some quiver, which was described by Demonet. This article gives explicit formulas for the decomposition of any element of $eRe$ as a linear combination of paths in the quiver described by Demonet. This is done by expressing appropriate compositions and pairings in a suitable monoidal category, which takes into account the representation theory of the finite group.


1975 ◽  
Vol 16 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Wolfgang Hamernik

In this note relations between the structure of a finite group G and ringtheoretical properties of the group algebra FG over a field F with characteristic p > 0 are investigated. Denoting by J(R) the Jacobson radical and by Z(R) the centre of the ring R, our aim is to prove the following theorem generalizing results of Wallace [10] and Spiegel [9]:Theorem. Let G be a finite group and let F be an arbitrary field of characteristic p > 0. Denoting by BL the principal block ideal of the group algebra FG the following statements are equivalent:(i) J(B1) ≤ Z(B1)(ii) J(B1)is commutative,(iii) G is p-nilpotent with abelian Sylowp-subgroups.


2016 ◽  
Vol 68 (2) ◽  
pp. 258-279 ◽  
Author(s):  
Lucas Calixto ◽  
Adriano Moura ◽  
Alistair Savage

AbstractAn equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect to the action of a finite group Γ acting on X and q. In this paper, we classify all irreducible finite-dimensional representations of the equivariant map queer Lie superalgebras under the assumption that Γ is abelian and acts freely on X. We show that such representations are parameterized by a certain set of Γ-equivariant finitely supported maps from X to the set of isomorphism classes of irreducible finite-dimensional representations of q. In the special case where X is the torus, we obtain a classification of the irreducible finite-dimensional representations of the twisted loop queer superalgebra.


Author(s):  
P. J. Hilton ◽  
D. Rees

The present paper has been inspired by a theorem of Swan(5). The theorem can be described as follows. Let G be a finite group and let Γ be its integral group ring. We shall denote by Z an infinite cyclic additive group considered as a left Γ-module by defining gm = m for all g in G and m in Z. By a Tate resolution of Z is meant an exact sequencewhere Xn is a projective module for − ∞ < n < + ∞, and.


1988 ◽  
Vol 108 (1-2) ◽  
pp. 117-132
Author(s):  
Shigeo Koshitani

SynopsisLet J(FG) be the Jacobson radical of the group algebra FG of a finite groupG with a Sylow 3-subgroup which is extra-special of order 27 of exponent 3 over a field F of characteristic 3, and let t(G) be the least positive integer t with J(FG)t = 0. In this paper, we prove that t(G) = 9 if G has a normal subgroup H such that (|G:H|, 3) = 1 and if H is either 3-solvable, SL(3,3) or the Tits simple group 2F4(2)'.


2016 ◽  
Vol 15 (05) ◽  
pp. 1650092
Author(s):  
Andreas Bächle ◽  
Mauricio Caicedo ◽  
Inneke Van Gelder

When considering the unit group of [Formula: see text] ([Formula: see text] the ring of integers of an abelian number field [Formula: see text] and a finite group [Formula: see text]) certain components in the Wedderburn decomposition of [Formula: see text] cause problems for known generic constructions of units; these components are called exceptional. Exceptional components are divided into two types: type 1 is division rings, type 2 is [Formula: see text]-matrix rings. For exceptional components of type 1 we provide infinite classes of division rings by describing the seven cases of minimal groups (with respect to quotients) having those division rings in their Wedderburn decomposition over [Formula: see text]. We also classify the exceptional components of type 2 appearing in group algebras of a finite group over number fields [Formula: see text] by describing all 58 finite groups [Formula: see text] having a faithful exceptional Wedderburn component of this type in [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document