scholarly journals An algebraic generalization of Kripke structures

2008 ◽  
Vol 145 (3) ◽  
pp. 549-577 ◽  
Author(s):  
SÉRGIO MARCELINO ◽  
PEDRO RESENDE

AbstractThe Kripke semantics of classical propositional normal modal logic is made algebraic via an embedding of Kripke structures into the larger class of pointed stably supported quantales. This algebraic semantics subsumes the traditional algebraic semantics based on lattices with unary operators, and it suggests natural interpretations of modal logic, of possible interest in the applications, in structures that arise in geometry and analysis, such as foliated manifolds and operator algebras, via topological groupoids and inverse semigroups. We study completeness properties of the quantale based semantics for the systems K, T, K4, S4 and S5, in particular obtaining an axiomatization for S5 which does not use negation or the modal necessity operator. As additional examples we describe intuitionistic propositional modal logic, the logic of programs PDL and the ramified temporal logic CTL.

Author(s):  
Kohei Kishida

Category theory provides various guiding principles for modal logic and its semantic modeling. In particular, Stone duality, or “syntax-semantics duality”, has been a prominent theme in semantics of modal logic since the early days of modern modal logic. This chapter focuses on duality and a few other categorical principles, and brings to light how they underlie a variety of concepts, constructions, and facts in philosophical applications as well as the model theory of modal logic. In the first half of the chapter, I review the syntax-semantics duality and illustrate some of its functions in Kripke semantics and topological semantics for propositional modal logic. In the second half, taking Kripke’s semantics for quantified modal logic and David Lewis’s counterpart theory as examples, I demonstrate how we can dissect and analyze assumptions behind different semantics for first-order modal logic from a structural and unifying perspective of category theory. (As an example, I give an analysis of the import of the converse Barcan formula that goes farther than just “increasing domains”.) It will be made clear that categorical principles play essential roles behind the interaction between logic, semantics, and ontology, and that category theory provides powerful methods that help us both mathematically and philosophically in the investigation of modal logic.


1974 ◽  
Vol 39 (3) ◽  
pp. 549-551 ◽  
Author(s):  
S. K. Thomason

It will be shown that propositional tense logic (with the Kripke relational semantics) may be regarded as a fragment of propositional modal logic (again with the Kripke semantics). This paper deals only with model theory. The interpretation of formal systems of tense logic as formal systems of modal logic will be discussed in [6].The languages M and T, of modal and tense logic respectively, each have a countable infinity of propositional variables and the Boolean connectives; in addition, M has the unary operator ⋄ and T has the unary operators F and P. A structure is a pair <W, ≺<, where W is a nonempty set and ≺ is a binary relation on W. An assignment V assigns to each propositional variable p a subset V(p) of W. Then V(α)£ W is defined for all formulas α of M or T by induction:We say that α is valid in <W, ≺>, or <W, ≺>, ⊨ α, if ⊩ (α) = W for every assignment V for <W, ≺>. If Γ is a set of formulas of M [T] and α is a formula of M [T], then α is a logical consequence of Γ, or Γ ⊩ α,if α is valid in every model of Γ i.e., in every structure in which all γ ∈ Γ are valid.


1977 ◽  
Vol 42 (3) ◽  
pp. 391-399 ◽  
Author(s):  
S. K. Thomason

In the Kripke semantics for propositional modal logic, a frame W = (W, ≺) represents a set of “possible worlds” and a relation of “accessibility” between possible worlds. With respect to a fixed frame W, a proposition is represented by a subset of W (regarded as the set of worlds in which the proposition is true), and an n-ary connective (i.e. a way of forming a new proposition from an ordered n-tuple of given propositions) is represented by a function fw: (P(W))n → P(W). Finally a state of affairs (i.e. a consistent specification whether or not each proposition obtains) is represented by an ultrafilter over W. {To avoid possible confusion, the reader should forget that some people prefer the term “states of affairs” for our “possible worlds”.}In a broader sense, an n-ary connective is represented by an n-ary operatorf = {fw∣ W ∈ Fr}, where Fr is the class of all frames and each fw: (P(W))n → P(W). A connective is modal if it corresponds to a formula of propositional modal logic. A connective C is coherent if whether C(P1,…, Pn) is true in a possible world depends only upon which modal combinations of P1,…,Pn are true in that world. (A modal combination of P1,…,Pn is the result of applying a modal connective to P1,…, Pn.) A connective C is strongly coherent if whether C(P1, …, Pn) obtains in a state of affairs depends only upon which modal combinations of P1,…, Pn obtain in that state of affairs.


1982 ◽  
Vol 47 (1) ◽  
pp. 191-196 ◽  
Author(s):  
George Boolos

Let ‘ϕ’, ‘χ’, and ‘ψ’ be variables ranging over functions from the sentence letters P0, P1, … Pn, … of (propositional) modal logic to sentences of P(eano) Arithmetic), and for each sentence A of modal logic, inductively define Aϕ by[and similarly for other nonmodal propositional connectives]; andwhere Bew(x) is the standard provability predicate for PA and ⌈F⌉ is the PA numeral for the Gödel number of the formula F of PA. Then for any ϕ, (−□⊥)ϕ = −Bew(⌈⊥⌉), which is the consistency assertion for PA; a sentence S is undecidable in PA iff both and , where ϕ(p0) = S. If ψ(p0) is the undecidable sentence constructed by Gödel, then ⊬PA (−□⊥→ −□p0 & − □ − p0)ψ and ⊢PA(P0 ↔ −□⊥)ψ. However, if ψ(p0) is the undecidable sentence constructed by Rosser, then the situation is the other way around: ⊬PA(P0 ↔ −□⊥)ψ and ⊢PA (−□⊥→ −□−p0 & −□−p0)ψ. We call a sentence S of PA extremely undecidable if for all modal sentences A containing no sentence letter other than p0, if for some ψ, ⊬PAAψ, then ⊬PAAϕ, where ϕ(p0) = S. (So, roughly speaking, a sentence is extremely undecidable if it can be proved to have only those modal-logically characterizable properties that every sentence can be proved to have.) Thus extremely undecidable sentences are undecidable, but neither the Godel nor the Rosser sentence is extremely undecidable. It will follow at once from the main theorem of this paper that there are infinitely many inequivalent extremely undecidable sentences.


2014 ◽  
Vol 7 (3) ◽  
pp. 439-454 ◽  
Author(s):  
PHILIP KREMER

AbstractIn the topological semantics for propositional modal logic, S4 is known to be complete for the class of all topological spaces, for the rational line, for Cantor space, and for the real line. In the topological semantics for quantified modal logic, QS4 is known to be complete for the class of all topological spaces, and for the family of subspaces of the irrational line. The main result of the current paper is that QS4 is complete, indeed strongly complete, for the rational line.


2019 ◽  
Vol 12 (2) ◽  
pp. 255-270 ◽  
Author(s):  
PAVEL NAUMOV ◽  
JIA TAO

AbstractModal logic S5 is commonly viewed as an epistemic logic that captures the most basic properties of knowledge. Kripke proved a completeness theorem for the first-order modal logic S5 with respect to a possible worlds semantics. A multiagent version of the propositional S5 as well as a version of the propositional S5 that describes properties of distributed knowledge in multiagent systems has also been previously studied. This article proposes a version of S5-like epistemic logic of distributed knowledge with quantifiers ranging over the set of agents, and proves its soundness and completeness with respect to a Kripke semantics.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Massoud Amini ◽  
Alireza Medghalchi

The relation between representations and positive definite functions is a key concept in harmonic analysis on topological groups. Recently this relation has been studied on topological groupoids. In this paper, we investigate the concept of restricted positive definite functions and their relation with restricted representations of an inverse semigroup. We also introduce the restricted Fourier and Fourier-Stieltjes algebras of an inverse semigroup and study their relation with the corresponding algebras on the associated groupoid.


1985 ◽  
Vol 50 (1) ◽  
pp. 102-109 ◽  
Author(s):  
Michael C. Nagle ◽  
S. K. Thomason

Our purpose is to delineate the extensions (normal and otherwise) of the propositional modal logic K5. We associate with each logic extending K5 a finitary index, in such a way that properties of the logics (for example, inclusion, normality, and tabularity) become effectively decidable properties of the indices. In addition we obtain explicit finite axiomatizations of all the extensions of K5 and an abstract characterization of the lattice of such extensions.This paper refines and extends the Ph.D. thesis [2] of the first-named author, who wishes to acknowledge his debt to Brian F. Chellas for his considerable efforts in directing the research culminating in [2] and [3]. We also thank W. J. Blok and Gregory Cherlin for observations which greatly simplified the proofs of Theorem 3 and Corollary 10.By a logic we mean a set of formulas in the countably infinite set Var of propositional variables and the connectives ⊥, →, and □ (other connectives being used abbreviatively) which contains all the classical tautologies and is closed under detachment and substitution. A logic is classical if it is also closed under RE (from A↔B infer □A ↔□B) and normal if it is classical and contains □ ⊤ and □ (P → q) → (□p → □q). A logic is quasi-classical if it contains a classical logic and quasi-normal if it contains a normal logic. Thus a quasi-normal logic is normal if and only if it is classical, and if and only if it is closed under RN (from A infer □A).


Sign in / Sign up

Export Citation Format

Share Document