Positive steady states of the Holling–Tanner prey–predator model with diffusion

Author(s):  
Rui Peng ◽  
Mingxin Wang

This paper is concerned with the Holling–Tanner prey–predator model with diffusion subject to the homogeneous Neumann boundary condition. We obtain the existence and non-existence of positive non-constant steady states.

Author(s):  
G. Karch

We study the behaviour, as t → ∞, of solutions to the convectiondiffusion equation on the half-line with the homogeneous Neumann boundary condition and with bounded initial data. The higher-order terms of the asymptotic expansion in Lp (R+) of solutions are derived.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Xiao-zhou Feng ◽  
Zhi-guo Wang

This paper discusses a predator-prey system with Holling-(n+1) functional response and the fractional type nonlinear diffusion term in a bounded domain under homogeneous Neumann boundary condition. The existence and nonexistence results concerning nonconstant positive steady states of the system were obtained. In particular, we prove that the positive constant solution(u~,v~)is asymptotically stable when the parameterksatisfies some conditions.


2015 ◽  
Vol 116 ◽  
pp. 19-25 ◽  
Author(s):  
Maria Fărcăşeanu ◽  
Mihai Mihăilescu ◽  
Denisa Stancu-Dumitru

2012 ◽  
Vol 05 (06) ◽  
pp. 1250052 ◽  
Author(s):  
LINA ZHANG ◽  
SHENGMAO FU ◽  
PING HU

The purpose of this paper is to study the effect of cross diffusion in a competition model with stage structure, under homogeneous Neumann boundary condition. It will be shown that cross diffusion cannot only destabilize a uniform positive equilibrium, it can also help diffusion to induce instability of the uniform positive equilibrium. Moreover, stationary patterns can arise from the effect of cross diffusion.


2010 ◽  
Vol 03 (02) ◽  
pp. 161-172 ◽  
Author(s):  
SHENGHU XU ◽  
WEIDONG LV

In this paper, a ratio-dependent prey–predator model with cross-diffusion and homogeneous Neumann boundary condition is studied. Using the energy estimates and the bootstrap arguments, the global existence of solutions for the model is investigated when the space dimension is less than ten.


2019 ◽  
Vol 29 (09) ◽  
pp. 1930025 ◽  
Author(s):  
Xiang-Ping Yan ◽  
Ya-Jun Ding ◽  
Cun-Hua Zhang

A reaction–diffusion Gierer–Meinhardt system with homogeneous Neumann boundary condition on one-dimensional bounded spatial domain is considered in the present article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation of the constant positive equilibrium are explored by analyzing in detail the associated eigenvalue problem. Moreover, properties of spatially homogeneous Hopf bifurcation are carried out by employing the normal form method and the center manifold technique for reaction–diffusion equations. Finally, numerical simulations are also provided in order to check the obtained theoretical conclusions.


Sign in / Sign up

Export Citation Format

Share Document