Dynamics Analysis in a Gierer–Meinhardt Reaction–Diffusion Model with Homogeneous Neumann Boundary Condition

2019 ◽  
Vol 29 (09) ◽  
pp. 1930025 ◽  
Author(s):  
Xiang-Ping Yan ◽  
Ya-Jun Ding ◽  
Cun-Hua Zhang

A reaction–diffusion Gierer–Meinhardt system with homogeneous Neumann boundary condition on one-dimensional bounded spatial domain is considered in the present article. Local asymptotic stability, Turing instability and existence of Hopf bifurcation of the constant positive equilibrium are explored by analyzing in detail the associated eigenvalue problem. Moreover, properties of spatially homogeneous Hopf bifurcation are carried out by employing the normal form method and the center manifold technique for reaction–diffusion equations. Finally, numerical simulations are also provided in order to check the obtained theoretical conclusions.

2015 ◽  
Vol 2015 ◽  
pp. 1-12
Author(s):  
Cun-Hua Zhang ◽  
Xiang-Ping Yan

A reaction-diffusion system coupled by two equations subject to homogeneous Neumann boundary condition on one-dimensional spatial domain(0,lπ)withl>0is considered. According to the normal form method and the center manifold theorem for reaction-diffusion equations, the explicit formulas determining the properties of Hopf bifurcation of spatially homogeneous and nonhomogeneous periodic solutions of system near the constant steady state(0,0)are obtained.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550013 ◽  
Author(s):  
M. Sivakumar ◽  
M. Sambath ◽  
K. Balachandran

In this paper, we consider a diffusive Holling–Tanner predator–prey model with Smith growth subject to Neumann boundary condition. We analyze the local stability, existence of a Hopf bifurcation at the co-existence of the equilibrium and stability of bifurcating periodic solutions of the system in the absence of diffusion. Furthermore the Turing instability and Hopf bifurcation analysis of the system with diffusion are studied. Finally numerical simulations are given to demonstrate the effectiveness of the theoretical analysis.


2012 ◽  
Vol 05 (06) ◽  
pp. 1250052 ◽  
Author(s):  
LINA ZHANG ◽  
SHENGMAO FU ◽  
PING HU

The purpose of this paper is to study the effect of cross diffusion in a competition model with stage structure, under homogeneous Neumann boundary condition. It will be shown that cross diffusion cannot only destabilize a uniform positive equilibrium, it can also help diffusion to induce instability of the uniform positive equilibrium. Moreover, stationary patterns can arise from the effect of cross diffusion.


2020 ◽  
Vol 25 (4) ◽  
Author(s):  
Xiang-Ping Yan ◽  
Pan Zhang ◽  
Cun-Huz Zhang

The present paper deals with a reaction–diffusion Brusselator system subject to the homogeneous Neumann boundary condition. When the effect of spatial diffusion is neglected, the local asymptotic stability and the detailed Hopf bifurcation of the unique positive equilibrium of the associated ODE system are analyzed. In the stable domain of the ODE system, the effect of spatial diffusion is explored, and local asymptotic stability, Turing instability and existence of Hopf bifurcation of the constant positive equilibrium are demonstrated. In addition, the direction of spatially homogeneous Hopf bifurcation and the stability of the spatially homogeneous bifurcating periodic solutions are also investigated. Finally, numerical simulations are also provided to check the obtained theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Wenzhen Gan ◽  
Canrong Tian ◽  
Qunying Zhang ◽  
Zhigui Lin

This paper is concerned with the asymptotical behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition. By taking food ingestion and species' moving into account, the model is further coupled with Michaelis-Menten type functional response and nonlocal delay. Sufficient conditions are derived for the global stability of the positive steady state and the semitrivial steady state of the proposed problem by using the Lyapunov functional. Our results show that intraspecific competition benefits the coexistence of prey and predator. Furthermore, the introduction of Michaelis-Menten type functional response positively affects the coexistence of prey and predator, and the nonlocal delay is harmless for stabilities of all nonnegative steady states of the system. Numerical simulations are carried out to illustrate the main results.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Kejun Zhuang ◽  
Gao Jia ◽  
Dezhi Liu

Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover, the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic solutions.


Sign in / Sign up

Export Citation Format

Share Document