m (λ)-functions for complex Sturm-Liouville operators

Author(s):  
David Race

SynopsisIn this paper, the formally J-symmetric Sturm-Liouville operator with complex-valued coefficients is considered and a generalisation of the Weyl limit-point, limit-circle dichotomy is sought by means of m (λ )-functions. These functions are then used to give an explicit description of all the associated J-selfadjoint operators with separated boundary conditions in the limit-circle case. A formulation of the eigenvalues of these operators, and a characterisation of which extensions are non-well-posed, are also found. Finally, the limit-point case is studied, mainly by means of an example.

2011 ◽  
Vol 2011 ◽  
pp. 1-41 ◽  
Author(s):  
Roman Šimon Hilscher ◽  
Petr Zemánek

We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce theM(λ)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and establish their geometric structure including the formulas for their center and matrix radii. Similar properties are then derived for the limiting Weyl disk. We discuss the notions of the system being in the limit point or limit circle case and prove several characterizations of the system in the limit point case and one condition for the limit circle case. We also define the Green function for the associated nonhomogeneous system and use its properties for deriving further results for the original system in the limit point or limit circle case. Our work directly generalizes the corresponding discrete time theory obtained recently by S. Clark and P. Zemánek (2010). It also unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian differential, difference, and dynamic systems when the spectral parameter appears in the second equation. Some of our results are new even in the case of the second-order Sturm-Liouville equations on time scales.


2016 ◽  
Vol 66 (4) ◽  
Author(s):  
Bilender P. Allahverdiev

AbstractIn this study we construct a space of boundary values of the minimal symmetric discrete Sturm-Liouville (or second-order difference) operators with defect index (1, 1) (in limit-circle case at ±∞ and limit-point case at ∓∞), acting in the Hilbert space


Everitt’s criterion for the validity of the generalized Hardy-Littlewood inequality presupposes that the associated differential equation is singular at one end-point of the interval of definition and is in the strong-limit-point case at the end-point. In this paper we investigate the cases when the differential equation is in the limit-circle case and non-oscillatory at the singular end-point and when both end-points of the interval are regular.


2016 ◽  
Vol 53 (4) ◽  
pp. 512-524
Author(s):  
Hüseyin Tuna ◽  
Aytekin Eryilmaz

In this paper, we study dissipative q-Sturm—Liouville operators in Weyl’s limit circle case. We describe all maximal dissipative, maximal accretive, self adjoint extensions of q-Sturm—Liouville operators. Using Livšic’s theorems, we prove a theorem on completeness of the system of eigenvectors and associated vectors of the dissipative q-Sturm—Liouville operators.


2012 ◽  
Vol 205 ◽  
pp. 67-118
Author(s):  
M. H. Annaby ◽  
Z. S. Mansour ◽  
I. A. Soliman

AbstractWe establish aq-Titchmarsh-Weyl theory for singularq-Sturm-Liouville problems. We defineq-limit-point andq-limit circle singularities, and we give sufficient conditions which guarantee that the singular point is in a limit-point case. The resolvent is constructed in terms of Green’s function of the problem. We derive the eigenfunction expansion in its series form. A detailed worked example involving Jacksonq-Bessel functions is given. This example leads to the completeness of a wide class ofq-cylindrical functions.


1995 ◽  
Vol 125 (6) ◽  
pp. 1331-1348 ◽  
Author(s):  
Sobhy El-sayed Ibrahim

In this paper, the general ordinary quasidifferential expression M of nth order, with complex coefficients, and its formal adjoint M− are considered. It is shown in the case of two singular endpomts and when all solutions of the equation and the adjoint equation are in (the limit-circle case) that all well-posed extensions of the minimal operator T0(M) have resolvents which are Hilbert Schmidt integral operators and consequently have a wholly discrete spectrum. This implies that all the regularly solvable operators have all of the standard essential spectra to be empty. These results extend those for the formally symmetric expression M studied in [1] and [14], and also extend those proved in [8] for one singular endpoint.


2012 ◽  
Vol 205 ◽  
pp. 67-118 ◽  
Author(s):  
M. H. Annaby ◽  
Z. S. Mansour ◽  
I. A. Soliman

AbstractWe establish a q-Titchmarsh-Weyl theory for singular q-Sturm-Liouville problems. We define q-limit-point and q-limit circle singularities, and we give sufficient conditions which guarantee that the singular point is in a limit-point case. The resolvent is constructed in terms of Green’s function of the problem. We derive the eigenfunction expansion in its series form. A detailed worked example involving Jackson q-Bessel functions is given. This example leads to the completeness of a wide class of q-cylindrical functions.


Sign in / Sign up

Export Citation Format

Share Document