A Banach–Stone theorem for spaces of weak* continuous functions

1985 ◽  
Vol 101 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael Cambern

SynopsisIf X is a compact Hausdorff space and E a dual Banach space, let C(X, Eσ*) denote the Banach space of continuous functions F from X to E when the latter space is provided with its weak * topology, normed by . It is shown that if X and Y are extremally disconnected compact Hausdorff spaces and E is a uniformly convex Banach space, then the existence of an isometry between C(X, Eσ*) and C(Y, Eσ*) implies that X and Y are homeomorphic.

1968 ◽  
Vol 32 ◽  
pp. 287-295 ◽  
Author(s):  
Mamoru Kanda

Let S be a locally compact (not compact) Hausdorff space satisfying the second axiom of countability and let ℬ be the σ field of all Borel subsets of S and let A be the σ-field of all the subsets of S which, for each finite measure μ defined on (S, A), are in the completed σ field of ℬ relative to μ. We denote by C0 the Banach space of continuous functions vanishing at infinity with the uniform norm and Bk the space of bounded A-measurable functions with compact support in S.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1969 ◽  
Vol 16 (4) ◽  
pp. 325-327 ◽  
Author(s):  
H. A. Priestley

The closed wedges in C(X) (the space of real continuous functions on a compact Hausdorff space X) which are also inf-lattices have been characterized by Choquet and Deny (2); see also (5). The present note extends their result to certain wedges of affine continuous functions on a Choquet simplex, the generalization being in the same spirit as the generalization of the Kakutani- Stone theorem obtained by Edwards in (4).I should like to thank my supervisor, Dr D. A. Edwards, for suggesting this problem and for his subsequent help. I am also grateful to the referee for correcting several slips.


2010 ◽  
Vol 52 (3) ◽  
pp. 435-445 ◽  
Author(s):  
IOANA GHENCIU ◽  
PAUL LEWIS

AbstractLet K be a compact Hausdorff space, X a Banach space and C(K, X) the Banach space of all continuous functions f: K → X endowed with the supremum norm. In this paper we study weakly precompact operators defined on C(K, X).


1989 ◽  
Vol 31 (2) ◽  
pp. 131-135 ◽  
Author(s):  
Hans Jarchow

Let K be a compact Hausdorff space, and let C(K) be the corresponding Banach space of continuous functions on K. It is well-known that every 1-summing operator S:C(K)→l2 is also nuclear, and therefore factors S = S1S2, with S1:l2→l2 a Hilbert–Schmidt operator and S1:C(K)→l2 a bounded operator. It is easily seen that this latter property is preserved when C(K) is replaced by any quotient, and that a Banach space X enjoys this property if and only if its second dual, X**, does. This led A. Pełczyński [15] to ask if the second dual of a Banach space X must be isomorphic to a quotient of a C(K)-space if X has the property that every 1-summing operator X-→l2 factors through a Hilbert-Schmidt operator. In this paper, we shall first of all reformulate the question in an appropriate manner and then show that counter-examples are available among super-reflexive Tsirelson-like spaces as well as among quasi-reflexive Banach spaces.


2005 ◽  
Vol 2005 (16) ◽  
pp. 2533-2545
Author(s):  
Markus Pomper

LetKbe a compact Hausdorff space andC(K)the Banach space of all real-valued continuous functions onK, with the sup-norm. Types overC(K)(in the sense of Krivine and Maurey) can be uniquely represented by pairs(ℓ,u)of bounded real-valued functions onK, whereℓis lower semicontinuous,uis upper semicontinuous,ℓ≤u, andℓ(x)=u(x)for all isolated pointsxofK. A condition that characterizes the pairs(ℓ,u)that represent double-dual types overC(K)is given.


Author(s):  
Manuel Felipe Cerpa-Torres ◽  
Michael A. Rincón-Villamizar

For a locally compact Hausdorff space K and a Banach space X, let C0K,X be the Banach space of all X-valued continuous functions defined on K, which vanish at infinite provided with the sup norm. If X is ℝ, we denote C0K,X as C0K. If AK be an extremely regular subspace of C0K and T:AK⟶C0S,X is an into isomorphism, what can be said about the set-theoretical or topological properties of K and S? Answering the question, we will prove that if X contains no copy of c0, then the cardinality of K is less than that of S. Moreover, if TT−1<3 and AK is also a subalgebra of C0K, the cardinality of the αth derivative of K is less than that of the αth derivative of S, for each ordinal α. Finally, if λX>1 and TT−1<λX, then K is a continuous image of a subspace of S. Here, λX is the geometrical parameter introduced by Jarosz in 1989: λX=infmaxx+λy:λ=1:x=y=1. As a consequence, we improve classical results about into isomorphisms from extremely regular subspaces already obtained by Cengiz.


2004 ◽  
Vol 77 (1) ◽  
pp. 17-28
Author(s):  
Markus Pomper

AbstractLet K be a compact Hausdorff space and C(K) the Banach space of all real-valued continuous functions on K, with the sup norm. Types over C(K) (in the sense of Krivine and Maurey) are represented here by pairs (l, u) of bounded real-valued functions on K, where l is lower semicontinuous and u is upper semicontinuous, l ≤ u and l(x) = u(x) for every isolated point x of K. For each pair the corresponding type is defined by the equation τ(g) = max{║l + g║∞, ║u + g║∞} for all g ∈ C(K), where ║·║∞ is the sup norm on bounded functions. The correspondence between types and pairs (l, u) is bijective.


1995 ◽  
Vol 18 (4) ◽  
pp. 701-704
Author(s):  
Parfeny P. Saworotnow

Stone Theorem about representing a Boolean algebra in terms of open-closed subsets of a topological space is a consequence of the Gelfand Theorem about representing aB∗- algebra as the algebra of continuous functions on a compact Hausdorff space.


Sign in / Sign up

Export Citation Format

Share Document