scholarly journals Gelfand theorem implies Stone representation theorem of Boolean rings

1995 ◽  
Vol 18 (4) ◽  
pp. 701-704
Author(s):  
Parfeny P. Saworotnow

Stone Theorem about representing a Boolean algebra in terms of open-closed subsets of a topological space is a consequence of the Gelfand Theorem about representing aB∗- algebra as the algebra of continuous functions on a compact Hausdorff space.

1969 ◽  
Vol 16 (4) ◽  
pp. 325-327 ◽  
Author(s):  
H. A. Priestley

The closed wedges in C(X) (the space of real continuous functions on a compact Hausdorff space X) which are also inf-lattices have been characterized by Choquet and Deny (2); see also (5). The present note extends their result to certain wedges of affine continuous functions on a Choquet simplex, the generalization being in the same spirit as the generalization of the Kakutani- Stone theorem obtained by Edwards in (4).I should like to thank my supervisor, Dr D. A. Edwards, for suggesting this problem and for his subsequent help. I am also grateful to the referee for correcting several slips.


1985 ◽  
Vol 101 (3-4) ◽  
pp. 203-206 ◽  
Author(s):  
Michael Cambern

SynopsisIf X is a compact Hausdorff space and E a dual Banach space, let C(X, Eσ*) denote the Banach space of continuous functions F from X to E when the latter space is provided with its weak * topology, normed by . It is shown that if X and Y are extremally disconnected compact Hausdorff spaces and E is a uniformly convex Banach space, then the existence of an isometry between C(X, Eσ*) and C(Y, Eσ*) implies that X and Y are homeomorphic.


1964 ◽  
Vol 16 ◽  
pp. 253-260 ◽  
Author(s):  
Henry B. Cohen

The letter k denotes an infinite cardinal. A space is a compact Hausdorff space unless otherwise indicated. A space is called extremally disconnected (k-extremally disconnected) if it is the Stone space for a complete (k-complete) Boolean algebra. A map is a continuous function from one space into another. A map f:X —> Y is called minimal if f is onto, but f(M) is properly contained in Y for each closed proper subset M of X. A space F is called free if F has a dense subset X such that every space-valued function on X extends to a map on all of F or, equivalently, if F is the Stone-Cech compactification of some discrete topological space X.


1959 ◽  
Vol 11 ◽  
pp. 80-86 ◽  
Author(s):  
Barron Brainerd

It is well known (2, 4) that the ring of all real (complex) continuous functions on a compact Hausdorff space can be characterized algebraically as a Banach algebra which satisfies certain additional intrinsic conditions. It might be expected that rings of all continuous functions on other topological spaces also have algebraic characterizations. The main purpose of this note is to discuss two such characterizations. In both cases the characterizations are given in the terms of the theory of F-brings (1). In one case a characterization is given for the ring of all (real) continuous functions on a generalized P-space, that is, a zero-dimensional topological space in which the class of open-closed sets forms a σ-algebra. A Hausdorff generalized P-space is a P-space in the terminology of (3). In the other case a theorem of Sikorski (6) is employed to give a characterization of the ring of all (real) continuous functions on an upper X1-compact P-space.


Order ◽  
2021 ◽  
Author(s):  
Péter Vrana

AbstractGiven a commutative semiring with a compatible preorder satisfying a version of the Archimedean property, the asymptotic spectrum, as introduced by Strassen (J. reine angew. Math. 1988), is an essentially unique compact Hausdorff space together with a map from the semiring to the ring of continuous functions. Strassen’s theorem characterizes an asymptotic relaxation of the preorder that asymptotically compares large powers of the elements up to a subexponential factor as the pointwise partial order of the corresponding functions, realizing the asymptotic spectrum as the space of monotone semiring homomorphisms to the nonnegative real numbers. Such preordered semirings have found applications in complexity theory and information theory. We prove a generalization of this theorem to preordered semirings that satisfy a weaker polynomial growth condition. This weaker hypothesis does not ensure in itself that nonnegative real-valued monotone homomorphisms characterize the (appropriate modification of the) asymptotic preorder. We find a sufficient condition as well as an equivalent condition for this to hold. Under these conditions the asymptotic spectrum is a locally compact Hausdorff space satisfying a similar universal property as in Strassen’s work.


1971 ◽  
Vol 23 (3) ◽  
pp. 468-480 ◽  
Author(s):  
N. A. Friedman ◽  
A. E. Tong

Representation theorems for additive functional have been obtained in [2, 4; 6-8; 10-13]. Our aim in this paper is to study the representation of additive operators.Let S be a compact Hausdorff space and let C(S) be the space of real-valued continuous functions defined on S. Let X be an arbitrary Banach space and let T be an additive operator (see § 2) mapping C(S) into X. We will show (see Lemma 3.4) that additive operators may be represented in terms of a family of “measures” {μh} which take their values in X**. If X is weakly sequentially complete, then {μh} can be shown to take their values in X and are vector-valued measures (i.e., countably additive in the norm) (see Lemma 3.7). And, if X* is separable in the weak-* topology, T may be represented in terms of a kernel representation satisfying the Carathéordory conditions (see [9; 11; §4]):


1974 ◽  
Vol 26 (4) ◽  
pp. 920-930 ◽  
Author(s):  
R. Grant Woods

Let X be a locally compact Hausdorff topological space. A compactification of X is a compact Hausdorff space which contains X as a dense subspace. Two compactifications αX and γX of X are equivalent if there is a homeomorphism from αX onto γX that fixes X pointwise. We shall identify equivalent compactifications of a given space. If is a family of compactifications of X, we can partially order by saying that αX ≦ γX if there is a continuous map from γX onto αX that fixes X pointwise.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Faruk Polat

We characterize the centre of the Banach lattice of Banach lattice -valued continuous functions on the Alexandroff duplicate of a compact Hausdorff space in terms of the centre of , the space of -valued continuous functions on . We also identify the centre of whose elements are the sums of -valued continuous and discrete functions defined on a compact Hausdorff space without isolated points, which was given by Alpay and Ercan (2000).


1975 ◽  
Vol 19 (3) ◽  
pp. 291-300 ◽  
Author(s):  
N. J. Kalton

Let S be a compact Hausdorff space and let Φ: C(S)→E be a linear operator defined on the space of real-valued continuous functions on S and taking values in a (real) topological vector space E. Then Φ is called exhaustive (7) if given any sequence of functions fn ∈ C(S) such that fn ≧ 0 andthen Φ(fn)→0 If E is complete then it was shown in (7) that exhaustive maps are precisely those which possess regular integral extensions to the space of bounded Borel functions on S; this is equivalent to possessing a representationwhere μ is a regular countably additive E-valued measure defined on the σ-algebra of Borel subsets of S.


1987 ◽  
Vol 52 (2) ◽  
pp. 368-373 ◽  
Author(s):  
S. Heinrich ◽  
C. Ward Henson ◽  
L. C. Moore

In this paper we give a closer analysis of the elementary properties of the Banach spaces C(K), where K is a totally disconnected, compact Hausdorff space, in terms of the Boolean algebra B(K) of clopen subsets of K. In particular we sharpen a result in [4] by showing that if B(K1) and B(K2) satisfy the same sentences with ≤ n alternations of quantifiers, then the same is true of C(K1) and C(K2). As a consequence we show that for each n there exist C(K) spaces which are elementarily equivalent for sentences with ≤ n quantifier alternations, but which are not elementary equivalent in the full sense. Thus the elementary properties of Banach spaces cannot be determined by looking at sentences with a bounded number of quantifier alternations.The notion of elementary equivalence for Banach spaces which is studied here was introduced by the second author [4] and is expressed using the language of positive bounded formulas in a first-order language for Banach spaces. As was shown in [4], two Banach spaces are elementarily equivalent in this sense if and only if they have isometrically isomorphic Banach space ultrapowers (or, equivalently, isometrically isomorphic nonstandard hulls.)We consider Banach spaces over the field of real numbers. If X is such a space, Bx will denote the closed unit ball of X, Bx = {x ϵ X∣ ∣∣x∣∣ ≤ 1}. Given a compact Hausdorff space K, we let C(K) denote the Banach space of all continuous real-valued functions on K, under the supremum norm. We will especially be concerned with such spaces when K is a totally disconnected compact Hausdorff space. In that case B(K) will denote the Boolean algebra of all clopen subsets of K. We adopt the standard notation from model theory and Banach space theory.


Sign in / Sign up

Export Citation Format

Share Document