Idempotent rank in finite full transformation semigroups

1990 ◽  
Vol 114 (3-4) ◽  
pp. 161-167 ◽  
Author(s):  
John M. Howie ◽  
Robert B. McFadden

SynopsisThe subsemigroup Singn of singular elements of the full transformation semigroup on a finite set is generated by n(n − l)/2 idempotents of defect one. In this paper we extend this result to the subsemigroup K(n, r) consisting of all elements of rank r or less. We prove that the idempotent rank, defined as the cardinality of a minimal generating set of idempotents, of K(n, r) is S(n, r), the Stirling number of the second kind.

2015 ◽  
Vol 25 (08) ◽  
pp. 1187-1222 ◽  
Author(s):  
Igor Dolinka ◽  
James East

The variant of a semigroup [Formula: see text] with respect to an element [Formula: see text], denoted [Formula: see text], is the semigroup with underlying set [Formula: see text] and operation ⋆ defined by [Formula: see text] for [Formula: see text]. In this paper, we study variants [Formula: see text] of the full transformation semigroup [Formula: see text] on a finite set [Formula: see text]. We explore the structure of [Formula: see text] as well as its subsemigroups [Formula: see text] (consisting of all regular elements) and [Formula: see text] (consisting of all products of idempotents), and the ideals of [Formula: see text]. Among other results, we calculate the rank and idempotent rank (if applicable) of each semigroup, and (where possible) the number of (idempotent) generating sets of the minimal possible size.


2012 ◽  
Vol 05 (03) ◽  
pp. 1250035 ◽  
Author(s):  
Huisheng Pei ◽  
Weina Deng

Let (X, ≤) be a totally ordered finite set, [Formula: see text] be the full transformation semigroup on X and E be an arbitrary equivalence on X. We consider a subsemigroup of [Formula: see text] defined by [Formula: see text] and call it the E-order-preserving transformation semigroup on X. In this paper, we endow EOPX with the so-called natural order ≤ and discuss when two elements in EOPX are related under this order, then determine those elements of EOPX which are compatible with ≤. Also, the maximal (minimal) elements are described.


1988 ◽  
Vol 30 (2) ◽  
pp. 203-211 ◽  
Author(s):  
B. Brown ◽  
P. M. Higgins

The collection of all self-maps on a non-empty set X under composition is known in algebraic semigroup theory as the full transformation semigroup on X and is written x. Its importance lies in the fact that any semigroup S can be embedded in the full transformation semigroup (where S1 is the semigroup S with identity 1 adjoined, if S does not already possess one). The proof is similar to Cayley's Theorem that a group G can be embedded in SG, the group of all bijections of G to itself. In this paper X will be a finite set of order n, which we take to be and so we shall write Tn for X.


1992 ◽  
Vol 120 (1-2) ◽  
pp. 129-142 ◽  
Author(s):  
Abdullahi Umar

SynopsisLet Singn be the subsemigroup of singular elements of the full transformation semigroup on a totally ordered finite set with n elements. Let be the subsemigroup of all decreasing maps of Singn. In this paper it is shown that is a non-regular abundant semigroup with n − 1 -classes and . Moreover, is idempotent-generated and it is generated by the n(n − 1)/2 idempotents in J*n−1. LetandSome recurrence relations satisfied by J*(n, r) and sh (n, r) are obtained. Further, it is shown that sh (n, r) is the complementary signless (or absolute) Stirling number of the first kind.


1990 ◽  
Vol 115 (3-4) ◽  
pp. 289-299 ◽  
Author(s):  
John M. Howie ◽  
Ewing L. Lusk ◽  
Robert B. McFadden

SynopsisEach singular element α of the full transformation semigroup on a finite set is generated by the idempotents of defect one. The length of the shortest expression of α as a product of such idempotents is given by the gravity function g(α).We use certain consequences of a result by Tatsuhiko Saito to explore connections between the defect and the gravity of α, and then determine the number of elements that have maximum gravity. Finally, we obtain formulae for the number of elements of small gravity. Such elements must have defect 1, and we determine their number within each ℋ-class. Many of the results obtained were suggested, and all have been verified, by programs written in PROLOG, a logic programming language very well suited for algebraic calculations.


1990 ◽  
Vol 116 (3-4) ◽  
pp. 359-366 ◽  
Author(s):  
G. U. Garba

SynopsisAn element α of Pn, the semigroup of all partial transformations of {1,2,…, n}, is said to have projection characteristic (r, s), or to belong to the set [r, s], if dom α= r, im α = s. Let E be the set of all idempotents in Pn\[n, n] and E1, the set of those idempotents with projection characteristic (n, n − 1) or (n − 1, n − 1). For α in Pn\[n, n], we define a number g(α), called the gravity of α and closely related to the number denned in Howie [5] for full transformations, and we obtain the result thatLet d(α) be the defect of α, and for any real number x let [x] be the least integer m such that m ≧ x. Then by analogy with the results of Saito [9] we have thatα ϵ Ek(α) and α ∉ Ek(α)where k(α) = [g(α)/d(α)] or [g(α)/d(α)+ 1. Following Howie, Lusk and McFadden [6] we then explore connections between the defect and the gravity of α. Letting K(n, r) be the subsemigroup of Pn consisting of all elements of rank r or less, we prove a result, corresponding to that of Howie and McFadden [7] for total transformations, that the idempotent rank, defined as the cardinality of a minimal generating set of idempotents, of K(n, r) is S(n + 1, r + 1), the Stirling number of the second kind.


2011 ◽  
Vol 18 (03) ◽  
pp. 523-532 ◽  
Author(s):  
Lei Sun ◽  
Weina Deng ◽  
Huisheng Pei

The paper is concerned with the so-called natural order on the semigroup [Formula: see text], where [Formula: see text] is the full transformation semigroup on a set X, E is a non-trivial equivalence on X and R is a cross-section of the partition X/E induced by E. We determine when two elements of TE(X,R) are related under this order, find elements of TE(X,R) which are compatible with ≤ on TE(X,R), and observe the maximal and minimal elements and the covering elements.


2005 ◽  
Vol 71 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Gonca Ayik ◽  
Hayrullah Ayik ◽  
Yusuf Ünlü ◽  
John M. Howie

The index and period of an element a of a finite semigroup are the smallest values of m ≥ 1 and r ≥ 1 such that am+r = am. An element with index m and period 1 is called an m-potent element. For an element α of a finite full transformation semigroup with index m and period r, a unique factorisation α = σβ such that Shift(σ) ∩ Shift(β) = ∅ is obtained, where σ is a permutation of order r and β is an m-potent. Some applications of this factorisation are given.


1982 ◽  
Vol 23 (2) ◽  
pp. 137-149 ◽  
Author(s):  
Mary Snowden ◽  
J. M. Howie

Let X be a finite set and let (X) be the full transformation semigroup on X, i.e. the set of all mappings from X into X, the semigroup operation being composition of mappings. This paper aims to characterize those elements of (X) which have square roots. An easily verifiable necessary condition, that of being quasi-square, is found in Theorem 2, and in Theorems 4 and 5 we find necessary and sufficient conditions for certain special elements of (X). The property of being compatibly amenable is shown in Theorem 7 to be equivalent for all elements of (X) to the possession of a square root.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750138
Author(s):  
Ping Zhao ◽  
Taijie You ◽  
Huabi Hu

Let [Formula: see text] and [Formula: see text] be the partial transformation and the strictly partial transformation semigroups on the finite set [Formula: see text]. It is well known that the ranks of the semigroups [Formula: see text] and [Formula: see text] are [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text], respectively. The idempotent rank, defined as the smallest number of idempotents generating set, of the semigroup [Formula: see text] has the same value as the rank. Idempotent can be seen as a special case (with [Formula: see text]) of [Formula: see text]-potent. In this paper, we determine the [Formula: see text]-potent ranks, defined as the smallest number of [Formula: see text]-potents generating set, of the semigroups [Formula: see text], for [Formula: see text], and [Formula: see text], for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document