On a class of nonlinear anisotropic parabolic problems

Author(s):  
M. H. Abdou ◽  
M. Chrif ◽  
S. El Manouni ◽  
H. Hjiaj

We prove the existence of weak solutions for the strongly nonlinear parabolic problem in the anisotropic Sobolev space , where the data f are assumed to be in the dual, and the nonlinear term g(x, t, s) has growth and sign conditions on s.

2013 ◽  
Vol 143 (6) ◽  
pp. 1185-1208 ◽  
Author(s):  
Rosaria Di Nardo ◽  
Filomena Feo ◽  
Olivier Guibé

We consider a general class of parabolic equations of the typewith Dirichlet boundary conditions and with a right-hand side belonging to L1 + Lp′ (W−1, p′). Using the framework of renormalized solutions we prove uniqueness results under appropriate growth conditions and Lipschitz-type conditions on a(u, ∇u), K(u) and H(∇u).


2019 ◽  
Vol 150 (6) ◽  
pp. 3074-3086
Author(s):  
Patricio Cerda ◽  
Leonelo Iturriaga

AbstractIn this paper, we study the existence of weak solutions of the quasilinear equation \begin{cases} -{\rm div} (a(\vert \nabla u \vert ^2)\nabla u)=\lambda f(x,u) &{\rm in} \ \Omega,\\ u=0 &{\rm on} \ \partial\Omega, \end{cases}where a : ℝ → [0, ∞) is C1 and a nonincreasing continuous function near the origin, the nonlinear term f : Ω × ℝ → ℝ is a Carathéodory function verifying certain superlinear conditions only at zero, and λ is a positive parameter. The existence of the solution relies on C1-estimates and variational arguments.


Author(s):  
Francesco Petitta

In this paper we prove a non-existence result for nonlinear parabolic problems with zero lower-order terms whose model iswhere Δp=div(|∇u|p−2∇u) is the usual p-laplace operator, λ is measure concentrated on a set of zero parabolic r-capacity (1<p<r) and q is large enough.


Author(s):  
Guy Mahler

We show the existence of weak solutions of nonlinear parabolic partial differential equations in unbounded domains, provided that a variant of the Leray-Lions conditions is satisfied.


2013 ◽  
Vol 25 (1) ◽  
pp. 133-153 ◽  
Author(s):  
BLANCA CLIMENT-EZQUERRA ◽  
FRANCISCO GUILLÉN-GONZÁLEZ

We review the mathematical analysis of some uniaxial, liquid crystal phases. Firstly, we state the models for the two different studied phases: nematic and smectic-A liquid crystals. The spatial and temporal profiles of the liquid crystal configurations will be described by means of strongly nonlinear parabolic partial differential systems, which are presented at the same time. Then we will state some results about existence, regularity, time-periodicity and stability of solutions at infinite time for both models. It is our aim to show that, although nematic and smectic-A phases have different physical properties and are modelled by different nonlinear parabolic problems, there exists a common mathematical machinery to rewrite the models and obtain analytical results.


2016 ◽  
Vol 23 (3) ◽  
pp. 303-321 ◽  
Author(s):  
Youssef Akdim ◽  
Abdelmoujib Benkirane ◽  
Mostafa El Moumni ◽  
Hicham Redwane

AbstractWe study the existence result of a renormalized solution for a class of nonlinear parabolic equations of the form${\partial b(x,u)\over\partial t}-\operatorname{div}(a(x,t,u,\nabla u))+g(x,t,u% ,\nabla u)+H(x,t,\nabla u)=\mu\quad\text{in }\Omega\times(0,T),$where the right-hand side belongs to ${L^{1}(Q_{T})+L^{p^{\prime}}(0,T;W^{-1,p^{\prime}}(\Omega))}$ and ${b(x,u)}$ is unbounded function of u, ${{-}\operatorname{div}(a(x,t,u,\nabla u))}$ is a Leray–Lions type operator with growth ${|\nabla u|^{p-1}}$ in ${\nabla u}$. The critical growth condition on g is with respect to ${\nabla u}$ and there is no growth condition with respect to u, while the function ${H(x,t,\nabla u)}$ grows as ${|\nabla u|^{p-1}}$.


2019 ◽  
Vol 38 (6) ◽  
pp. 99-126
Author(s):  
Abdeslam Talha ◽  
Abdelmoujib Benkirane

In this work, we prove an existence result of entropy solutions in Musielak-Orlicz-Sobolev spaces for a class of nonlinear parabolic equations with two lower order terms and L1-data.


Sign in / Sign up

Export Citation Format

Share Document