The staining pattern of the tropomyosin sequence is displayed in a new paracrystal

Author(s):  
M.K. Lamvik ◽  
L.L. Klatt

Tropomyosin paracrystals have been used extensively as test specimens and magnification standards due to their clear periodic banding patterns. The paracrystal type discovered by Ohtsuki1 has been of particular interest as a test of unstained specimens because of alternating bands that differ by 50% in mass thickness. While producing specimens of this type, we came across a new paracrystal form. Since this new form displays aligned tropomyosin molecules without the overlaps that are characteristic of the Ohtsuki-type paracrystal, it presents a staining pattern that corresponds to the amino acid sequence of the molecule.

1989 ◽  
Vol 61 (03) ◽  
pp. 437-441 ◽  
Author(s):  
Cindra Condra ◽  
Elka Nutt ◽  
Christopher J Petroski ◽  
Ellen Simpson ◽  
P A Friedman ◽  
...  

SummaryThe present work reports the discovery and charactenzation of an anticoagulant protein in the salivary gland of the giant bloodsucking leech, H. ghilianii, which is a specific and potent inhibitor of coagulation factor Xa. The inhibitor, purified to homogeneity, displayed subnanomolar inhibition of bovine factor Xa and had a molecular weight of approximately 15,000 as deduced by denaturing SDS-PAGE. The amino acid sequence of the first 43 residues of the H. ghilianii derived inhibitor displayed a striking homology to antistasin, the recently described subnanomolar inhibitor of factor Xa isolated from the Mexican leech, H. officinalis. Antisera prepared to antistasin cross-reacted with the H. ghilianii protein in Western Blot analysis. These data indicate that the giant Amazonian leech, H. ghilianii, and the smaller Mexican leech, H. officinalrs, have similar proteins which disrupt the normal hemostatic clotting mechanisms in their mammalian host’s blood.


1993 ◽  
Vol 69 (03) ◽  
pp. 217-220 ◽  
Author(s):  
Jonathan B Rosenberg ◽  
Peter J Newman ◽  
Michael W Mosesson ◽  
Marie-Claude Guillin ◽  
David L Amrani

SummaryParis I dysfibrinogenemia results in the production of a fibrinogen molecule containing a functionally abnormal γ-chain. We determined the basis of the molecular defect using polymerase chain reaction (PCR) to amplify the γ-chain region of the Paris I subject’s genomic DNA. Comparative sequence analysis of cloned PCR segments of normal and Paris I genomic DNA revealed only an A→G point mutation occurring at nucleotide position 6588 within intron 8 of the Paris I γ-chain gene. We examined six normal individuals and found only normal sequence in this region, indicating that this change is not likely to represent a normal polymorphism. This nucleotide change leads to a 45 bp fragment being inserted between exons 8 and 9 in the mature γparis I chain mRNA, and encodes a 15 amino acid insert after γ350 [M-C-G-E-A-L-P-M-L-K-D-P-C-Y]. Alternative splicing of this region from intron 8 into the mature Paris I γ-chain mRNA also results after translation into a substitution of S for G at position γ351. Biochemical studies of 14C-iodoacetamide incorporation into disulfide-reduced Paris I and normal fibrinogen corroborated the molecular biologic predictions that two additional cysteine residues exist within the γpariS I chain. We conclude that the insertion of this amino acid sequence leads to a conformationallyaltered, and dysfunctional γ-chain in Paris I fibrinogen.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Diabetes ◽  
1980 ◽  
Vol 29 (10) ◽  
pp. 782-787 ◽  
Author(s):  
F. M. Ng ◽  
J. Bornstein ◽  
C. E. Pullin ◽  
J. O. Bromley ◽  
S. L. Macaulay

2020 ◽  
Author(s):  
Michele Larocca

<p>Protein folding is strictly related to the determination of the backbone dihedral angles and depends on the information contained in the amino acid sequence as well as on the hydrophobic effect. To date, the type of information embedded in the amino acid sequence has not yet been revealed. The present study deals with these problematics and aims to furnish a possible explanation of the information contained in the amino acid sequence, showing and reporting rules to calculate the backbone dihedral angles φ. The study is based on the development of mechanical forces once specific chemical interactions are established among the side chain of the residues in a polypeptide chain. It aims to furnish a theoretical approach to predict backbone dihedral angles which, in the future, may be applied to computational developments focused on the prediction of polypeptide structures.</p>


2011 ◽  
Vol 37 (12) ◽  
pp. 1331-1338 ◽  
Author(s):  
Jian-Xiu GUO ◽  
Ni-Ni RAO ◽  
Guang-Xiong LIU ◽  
Jie LI ◽  
Yun-He WANG

Sign in / Sign up

Export Citation Format

Share Document