scholarly journals Determination of structure factors of copper by convergent beam electron diffraction

Author(s):  
John Mansfield ◽  
Martin Saunders ◽  
George Burgess ◽  
David Bird ◽  
Nestor Zaluzec

There has been considerable recent interest in the determination of structure factors from convergent-beam electron diffraction (CBED) patterns and the ultimate goal is the ability to retrieve the crystal structure of an unknown crystal by inversion of a CBED pattern. There are a number of different methods that have been used to extract structure factor information. The zone-axis pattern fitting technique of Bird and Saunders has recently been used to obtain structure factors for silicon that compare well with those obtained by X-ray methods. This work extends the techniques to f.c.c. metals, specifically copper.CBED patterns were recorded from [110] zone axes of electropolished foils of pure copper (99.999% purity) in the Philips EM420T at Argonne National Laboratory. The patterns were energy-filtered by scanning the whole pattern across the entrance aperture of a Gatan #607 serial energy loss spectrometer and collecting the zero loss intensity only (energy window ∼5eV).

1999 ◽  
Vol 55 (2) ◽  
pp. 188-196 ◽  
Author(s):  
R. Høier ◽  
C. R. Birkeland ◽  
R. Holmestad ◽  
K Marthinsen

Quantitative convergent-beam electron diffraction is used to determine structure factors and three-phase structure invariants. The refinements are based on centre-disc intensities only. An algorithm for parameter-sensitive pixel sampling of experimental intensities is implemented in the refinement procedure to increase sensitivity and computer speed. Typical three-beam effects are illustrated for the centrosymmetric case. The modified refinement method is applied to determine amplitudes and three-phase structure invariants in noncentrosymmetric InP. The accuracy of the results is shown to depend on the choice of the initial parameters in the refinement. Even unrealistic starting assumptions and incorrect temperature factor lead to stable results for the structure invariant. The examples show that the accuracy varies from 1 to 10° in the electron three-phase invariants determined and from 0.5 to 5% for the amplitudes. Individual phases could not be determined in the present case owing to spatial intensity correlations between phase-sensitive pixels. However, for the three-phase structure invariant, stable solutions were found.


2011 ◽  
Vol 1295 ◽  
Author(s):  
X. H. Sang ◽  
A. Kulovits ◽  
J. Wiezorek

ABSTRACTAccurate Debye-Waller (DW) factors of chemically ordered β-NiAl (B2, cP2, ${\rm{Pm}}\bar 3 {\rm{m}}$) have been measured at different temperatures using an off-zone axis multi-beam convergent beam electron diffraction (CBED) method. We determined a cross over temperature below which the DW factor of Ni becomes smaller than that of Al of ~90K. Additionally, we measured for the first time DW factors and structure factors of chemically ordered γ1-FePd (L10, tP2, P4/mmm) at 120K. We were able to simultaneously determine all four anisotropic DW factors and several low order structure factors using different special off-zone axis multi-beam convergent beam electron diffraction patterns with high precision and accuracy. An electron charge density deformation map was constructed from measured X-ray diffraction structure factors for γ1-FePd.


2002 ◽  
Vol 382 (4) ◽  
pp. 422-430 ◽  
Author(s):  
Takuya Hashimoto ◽  
Kenji Tsuda ◽  
Junichiro Shiono ◽  
Junichiro Mizusaki ◽  
Michiyoshi Tanaka

1999 ◽  
Vol 589 ◽  
Author(s):  
C. Schuer ◽  
M. Leicht ◽  
T. Marek ◽  
H.P. Strunk

AbstractWe have optimized the sensitivity of convergent beam electron diffraction (CBED) by orienting the specimen such that the central (000) diffraction disc shows a pattern of defect lines that are most sensitive to tetragonal distortion. We compare the position of these lines in the experimentally obtained patterns with results from computer simulations, which need to be based on dynamical diffraction theory. In both experimental and simulated patterns the positions of the defect lines are determined by applying a Hough transformation. As a result of this optimized approach, we can measure the tetragonal distortion of a low temperature grown GaAs layer as low as 0.04%.


2000 ◽  
Vol 69 (7) ◽  
pp. 1939-1941 ◽  
Author(s):  
Kenji Tsuda ◽  
Shuichi Amamiya ◽  
Michiyoshi Tanaka ◽  
Yukio Noda ◽  
Masahiko Isobe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document