Roughness measurements of nonlinear optical polymer films by scanning tunneling microscopy

Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.

1992 ◽  
Vol 285 ◽  
Author(s):  
Stephen E. Russek ◽  
Alexana Roshko ◽  
Steven C. Sanders ◽  
David A. Rudman ◽  
J. W. Ekin ◽  
...  

ABSTRACTUsing scanning tunneling microscopy (STM) and reflection high energy electron diffraction (RHEED) we have examined the growth morphology, surface structure, and surface degradation of laser ablated YBa2Cu3O7−δ thin films. Films from 5 nm to ltm thick were studied. The films were deposited on MgO and LaAlO3 substrates using two different excimer laser ablation systems. Both island nucleated and spiral growth morphologies were observed depending on the substrate material and deposition rate used. The initial growth mechanism observed for a 5–10 nm thick film is replicated through different growth layers up to thicknesses of 200 run. Beyond 200 rnm, the films show some a-axis grains and other outgrowths. The thinnest films (5–10 nm) show considerable surface roughness on the order of 3–4 nm. For both growth mechanisms the ledge width remains approximately constant (∼ 30 nm) and the surface roughness increases as the film thickness increases. The films with spiral growth have streaked RHEED patterns despite having considerable surface roughness, while the films with island growth have more of a three dimensional diffraction pattern. RHEED patterns were obtained after the film surfaces were degraded by exposure to air, KOH developer, a Br-methanol etch, and a shallow ion mill. Exposure to air and KOH developer caused only moderate degradation of the RHEED pattern whereas a shallow (I nm deep) 300 V ion mill completely destroyed the RHEED pattern.


1993 ◽  
Vol 3 (6) ◽  
pp. 244-247
Author(s):  
Giovanni Aloisi ◽  
Maurizio Muniz-Miranda ◽  
Rolando Guidelli ◽  
Alexander M. Funtikov ◽  
Vladimir E. Kazarinov

1996 ◽  
Vol 449 ◽  
Author(s):  
Y. Nakada ◽  
S. Miwa ◽  
H. Okumura

ABSTRACTTo investigate of the initial stage of GaN growth on Si, 0.2 Ga monolayers (ML) on Si (111) was nitrided and then the nitrided surfaces were observed by scanning tunneling microscopy (STM). An aggregation of islands whose longest edges had a direction rotated 15 ° from Si [110] direction was observed. The shape of islands looked like a pentagon. Surface roughness was estimated for several nitrided conditions. It was found that surface roughness becomes larger as the nitridation process proceeds.


Sign in / Sign up

Export Citation Format

Share Document