nitridation process
Recently Published Documents


TOTAL DOCUMENTS

134
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Tianlin Yang ◽  
Koji KITA

Abstract Kinetics of SiC surface nitridation process of high-temperature N2 annealing was investigated with 4H-SiC(0001)/SiO2 structure based on the correlation between the rates of N incorporation and SiC consumption induced by SiC etching. During the early stage of the annealing process, the rate-limiting step for N incorporation would be the removal of the topmost C atoms in the slow-etching case, while it would be another reaction step, probably the activation process of nitrogen in the fast-etching case. The SiO2 layer thickness and the annealing ambient which serve as the parameters to affect the SiC etching rate, would determine the N incorporation rate according to the kinetic correlation between the N incorporation and SiC etching. The SiC consumption observed during high-temperature annealing in N2 or N2/H2 ambient would be induced by the active oxidation by residual O2 or H2O in the ambient, which would lead to the SiC surface roughening.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5909
Author(s):  
Hicham Helal ◽  
Zineb Benamara ◽  
Mouhamed Amine Wederni ◽  
Sabrine Mourad ◽  
Kamel Khirouni ◽  
...  

Au/0.8 nm–GaN/n–GaAs Schottky diodes were manufactured and electrically characterized over a wide temperature range. As a result, the reverse current Iinv increments from 1 × 10−7 A at 80 K to about 1 × 10−5 A at 420 K. The ideality factor n shows low values, decreasing from 2 at 80 K to 1.01 at 420 K. The barrier height qϕb grows abnormally from 0.46 eV at 80 K to 0.83 eV at 420 K. The tunnel mechanism TFE effect is the responsible for the qϕb behavior. The series resistance Rs is very low, decreasing from 13.80 Ω at 80 K to 4.26 Ω at 420 K. These good results are due to the good quality of the interface treated by the nitridation process. However, the disadvantage of the nitridation treatment is the fact that the GaN thin layer causes an inhomogeneous barrier height.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 784
Author(s):  
Bing-Jyh Lu ◽  
Keng-Ta Lin ◽  
Yi-Ming Kuo ◽  
Cheng-Hsien Tsai

In this study, different amounts of SiO2 nanoparticles (7 nm) were added to simultaneously reach high transmittance, high hardness, and high adhesion for TiO2 film prepared by the sol–gel method and coated on glass through a dip-coating technique. For the film to achieve self-cleaning, anti-fogging, superhydrophilicity, and visible photo-induced photocatalysis, TiO2-SiO2 film was modified via a rapid microwave plasma-nitridation process for efficient N-doping by various N2-containing gases (N2, N2/Ar/O2, N2/Ar). Through nitrogen plasma, the content of N atom reached 1.3% with the ratio of O/Ti atom being 2.04. The surface of the thin films was smooth, homogeneous, and did not crack, demonstrated by the root mean square (RMS) roughness of film surface being 3.29–3.94 nm. In addition, the films were composed of nanoparticles smaller than 10 nm, with a thickness of about 100 nm, as well as the crystal phase of the thin film being anatase. After the plasma-nitridation process, the visible-light transmittance of N-doped TiO2-SiO2 films was 89.7% (clean glass = 90.1%). Moreover, the anti-fogging ability was excellent (contact angle < 5°) even without light irradiation. The degradation of methylene blue showed that the photocatalytic performance of N-doped TiO2-SiO2 films was apparently superior to that of unmodified films under visible-light irradiation. Moreover, the pencil hardness and adhesion rating test of the thin films were 7H and 5B, respectively, indicating that the obtained coatings had great mechanical stability.


2021 ◽  
Vol 118 (3) ◽  
pp. 309
Author(s):  
Jiang Diao ◽  
Jing Lei ◽  
Yiyu Qiu ◽  
Deman Liu ◽  
Hong-Yi Li ◽  
...  

In this paper, a series of nitriding experiments were carried out to investigate the phase evolution and element migration in the nitriding process. The results show that it undergoes a low temperature reducing stage firstly. High valent vanadium oxides are reduced to V2O3 between room temperature and 770 °C. In Ar atmosphere, V2O3 reacts with C to form VC in the temperature interval of 770 °C∼1080 °C. In N2 atmosphere, V2O3 reacts directly with N2 and C to form VN in the interval of 670 °C∼1050 °C. During 1050 °C∼1270 °C, part of the VN obtained in the previous reaction stage will react with C to form VC. High temperature is beneficial to the removal of impurity element sulfur. The volatilization of alkali metal elements in the pellet mainly occurs between 670 °C and 1270 °C. However, there are about 20% of sodium and potassium remain in the nitriding product. The volatile alkali metal vapor would react with other gases at the furnace cover to form a white sediment and deposits on the cover. The sediment mainly consists of Na2CO3, K2CO3, Na2SO4, K2SO4, KCl, etc.


Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 409
Author(s):  
Kuizhou Dou ◽  
Yinshan Jiang ◽  
Bing Xue ◽  
Cundi Wei ◽  
Fangfei Li

Rare-earth-doped SiAlON and Si3N4 materials from aluminosilicate starting materials have been reported to show superior photoluminescence (PL) properties. Three different starting materials, including pulverized coal furnace fly ash, diatomite and raw illite, were used for synthesis of nitride materials. The phase and morphology evolution of these products were carefully monitored at the low temperature range of 1350 °C to 1450 °C by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). The PL properties of Eu-doped nitride products were also comparatively characterized. The results show that the type of starting material affects the phase composition and the photoluminescence properties of products. The existence of aluminum and alkali metals could effectively promote nitridation reactions. Aluminum in the starting materials led to the formation of different aluminum-rich nitride phases. Thus, β-SiAlON could be achieved at a much lower temperature (1350 °C) using raw illite or fly ash containing the proper amount of aluminum. Additionally, excess aluminum led to the formation of corundum and 15R-SiAlON. The products from pulverized coal furnace fly ash had more prismatic particles, and the products from diatomite had more fibrous particles. With the progress of the nitridation process, the fibers were increased, becoming longer and straighter, and the prismatic particles were more obvious. The presence of aluminum in the starting materials led to a blue shift in the photoluminescence spectrum.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 356
Author(s):  
Yongjie Liu ◽  
Yue Wang ◽  
Zhixiong You ◽  
Xuewei Lv

The steel micro-alloyed with ferrovanadium nitride has extremely superior properties that make it widely utilized in structural components, construction and aircraft. The conventional methods for synthesizing ferrovanadium nitride include nitridation of pure ferrovanadium alloy or carbothermal nitridation of metallic oxides, using nitrogen or ammonia gas as nitrogen sources. In this study, ferrovanadium nitride (FeV45N) was prepared by direct reduction and nitridation of the corresponding metal oxides with ammonia as the reductant and nitrogen source. This method avoids the introduction of other impurity elements, except the negligible trace elements accompanied with the raw materials. The thermodynamics of the reduction and nitridation process were initially analyzed. During the subsequent ammonia reduction process, the FeV45N powders were successfully obtained at 1273 K for 6 h. The obtained powders were pressed into cylindrical briquettes by hot pressing (HP) at 1473 K for 1 h in vacuum. In the investigation, the X-ray diffraction and morphological analysis of the products was also carried out, and the reaction mechanisms were discussed in detail. The nitrogen content of the final product can reach 11.85 wt. %, and the residual oxygen content can be reduced to 0.25 wt. %. By sintering, the density of the alloy can reach 5.92 g/cm3.


Sign in / Sign up

Export Citation Format

Share Document