Atomic force microscopy studies of microstructure and properties of self-assembled monolayers

Author(s):  
J. F. Richards ◽  
E. B. Troughton ◽  
R. A. Dennis ◽  
P. E. Russell

Self-assembled monolayers are unique structures and have received considerable attention from microscopists seeking to image the predicted molecular level structure. More recently, practical engineering applications of SAMs have been proposed in areas ranging from corrosion barriers to adhesion promoters to lithographic resists. While some of the applications of interest, most notably the lithographic resists, can be developed on substrates close to the ideal; such as single crystal Si wafers or thin epitaxial films; many others will require the coating of very non-ideal surfaces. These may range from materials such as Al or ferrous based metals to engineering polymeric materials. In this study we have taken a two-pronged approach to develop reliable systematic atomic force microscopy (AFM) techniques for the determination of both microstructure and properties of SAMs on various substrates of interest.We have chosen to investigate n-alkanethiols (SH-(CH2)n-1-CH3) on single crystal gold as our reference system for technique development.

2017 ◽  
Vol 28 (45) ◽  
pp. 455603 ◽  
Author(s):  
Hitoshi Asakawa ◽  
Natsumi Inada ◽  
Kaito Hirata ◽  
Sayaka Matsui ◽  
Takumi Igarashi ◽  
...  

2005 ◽  
Vol 871 ◽  
Author(s):  
Imma Ratera ◽  
Jinyu Chen ◽  
Amanda Murphy ◽  
Frank Ogletree ◽  
Jean M. J. Fréchet ◽  
...  

AbstractThe oligothiophene derivative (4-(5″″-tetradecyl-[2,2′;5′,2″;5″,2″′;5″′,2″″] pentathiophen-5-yl)-butyric acid (C14-5TBA) was synthesized and the structural and mechanical properties of self-assembled monolayers on mica have been studied by atomic force microscopy (AFM). The films were prepared by drop casting a dilute THF solution (1mM) of the oligothiphene on mica. Islands containing primarily monolayers with a very small percentage of multilayers were formed. The molecules adsorb through the carboxylic group, and expose the alkyl chain (CH2)13CH3. High resolution AFM scans reveal a well ordered structure of molecules with unit cell dimensions of 0.65 and 0.46 nm. Applying load to the tip, the molecular film was gradually compressed from an initial height of 4.1nm to a final one of 2.6 nm, corresponding to atilt of the alkyl chains. In regions covered with bilayers the molecules in the second layer were oriented opposite to those in the first layer, thus exposing the carboxylic end group to the air. These second layer was easily removed as the tip pressure increased.


Langmuir ◽  
1999 ◽  
Vol 15 (17) ◽  
pp. 5541-5546 ◽  
Author(s):  
Holger Schönherr ◽  
G. Julius Vancso ◽  
Bart-Hendrik Huisman ◽  
Frank C. J. M. van Veggel ◽  
David N. Reinhoudt

2005 ◽  
Vol 44 (7B) ◽  
pp. 5378-5381 ◽  
Author(s):  
Takashi Ichii ◽  
Masashi Urabe ◽  
Takeshi Fukuma ◽  
Kei Kobayashi ◽  
Kazumi Matsushige ◽  
...  

2011 ◽  
Vol 47 (31) ◽  
pp. 8823 ◽  
Author(s):  
Cristiano Albonetti ◽  
Stefano Casalini ◽  
Francesco Borgatti ◽  
Luca Floreano ◽  
Fabio Biscarini

Sign in / Sign up

Export Citation Format

Share Document