Conversion of gamma lithium aluminate to lithium aluminum carbonate hydroxide hydrate

1996 ◽  
Vol 11 (4) ◽  
pp. 312-317 ◽  
Author(s):  
Susan Jacob Beckerman ◽  
Robert B. Ford ◽  
Mark T. Nemeth

Gamma-phase lithium aluminate (LiAlO2) is a ceramic powder used in molten carbonate fuel cells (MCFCs) and in other nuclear and ceramic applications. Upon exposure to water vapor and carbon dioxide at 25 °C, we have observed that gamma-LiAlO2 converts to lithium aluminum carbonate hydroxide hydrate, Li2Al4(CO3)(OH)12·3H2O(LACHH) and Li2CO3. The conversion was observed by X-ray diffraction (XRD) and carbonate analysis. An equation for the conversion is given, and the morphology is determined by scanning electron microscopy. A high-temperature XRD study and thermogravimetric/differential thermal analysis (TGA/DTA) showed that LACHH decomposes at 250 °C. The decomposition products of LACHH and Li2CO3 react to form first alpha-LiAlO2 and then gamma-LiAlO2 at temperatures of 650 and 1000 °C, respectively.

1997 ◽  
Vol 496 ◽  
Author(s):  
M. T. Nemeth ◽  
R. B. Ford ◽  
T. A. Taylor

ABSTRACTLithium aluminate, LiA1O2is a ceramic powder which is used as the porous solid support for the electrolyte in molten carbonate fuel cells (MCFCs). It has previously been reported that gamma LiAlO2will convert to lithium aluminum carbonate hydroxide hydrate, Li2Al4(CO3)(OH)123H2O and Li2CO3when exposed to water vapor and carbon dioxide. We compare three techniques, weight gain, carbonate content and x-ray diffraction to measure the amount of conversion. The reaction may involve amorphous intermediates and no one technique by itself is satisfactory to study the conversion.


ChemInform ◽  
2010 ◽  
Vol 26 (11) ◽  
pp. no-no
Author(s):  
K. PETROV ◽  
E. MIRTCHEVA ◽  
J. L. MARTIN DE VIDALES ◽  
R. ROJAS ◽  
O. GARCIA-MARTINEZ

Polyhedron ◽  
1994 ◽  
Vol 13 (24) ◽  
pp. 3269-3275 ◽  
Author(s):  
K. Petrov ◽  
E. Mirtcheva ◽  
J.L.Martin de Vidales ◽  
R. Rojas ◽  
O. Garcia-Martinez

Ionics ◽  
2021 ◽  
Vol 27 (5) ◽  
pp. 2017-2025
Author(s):  
Nikolas Schiffmann ◽  
Ethel C. Bucharsky ◽  
Karl G. Schell ◽  
Charlotte A. Fritsch ◽  
Michael Knapp ◽  
...  

AbstractLithium aluminum titanium phosphate (LATP) is known to have a high Li-ion conductivity and is therefore a potential candidate as a solid electrolyte. Via sol-gel route, it is already possible to prepare the material at laboratory scale in high purity and with a maximum Li-ion conductivity in the order of 1·10−3 s/cm at room temperature. However, for potential use in a commercial, battery-cell upscaling of the synthesis is required. As a first step towards this goal, we investigated whether the sol-gel route is tolerant against possible deviations in the concentration of the precursors. In order to establish a possible process window for sintering, the temperature interval from 800 °C to 1100 °C and holding times of 10 to 480 min were evaluated. The resulting phase compositions and crystal structures were examined by X-ray diffraction. Impedance spectroscopy was performed to determine the electrical properties. The microstructure of sintered pellets was analyzed by scanning electron microscopy and correlated to both density and ionic conductivity. It is shown that the initial concentration of the precursors strongly influences the formation of secondary phases like AlPO4 and LiTiOPO4, which in turn have an influence on ionic conductivity, densification behavior, and microstructure evolution.


Sign in / Sign up

Export Citation Format

Share Document