hydroxide hydrate
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 13)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 9 ◽  
Author(s):  
Yubing Yan

Developing efficient and low-cost replacements for noble metals as electrocatalysts for the oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ grown on the surface of carbon cloth through a facile one-step hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires 317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For the stability, there is no significant attenuation of current density after continuous operation 27 h. This work paves a facile way to the design and construction of electrocatalysts for the OER.


ACS Omega ◽  
2021 ◽  
Author(s):  
Sangeetha Kumaravel ◽  
Mohanapriya Subramanian ◽  
Kannimuthu Karthick ◽  
Arunkumar Sakthivel ◽  
Subrata Kundu ◽  
...  

2020 ◽  
Vol 59 (22) ◽  
pp. 16690-16702 ◽  
Author(s):  
Kannimuthu Karthick ◽  
Sugumar Subhashini ◽  
Rishabh Kumar ◽  
Sridhar Sethuram Markandaraj ◽  
Muthukumar Muthu Teepikha ◽  
...  

2020 ◽  
Vol 12 (36) ◽  
pp. 40220-40228
Author(s):  
Shan Zhang ◽  
Bolong Huang ◽  
Liguang Wang ◽  
Xiaoyan Zhang ◽  
Haishuang Zhu ◽  
...  

2019 ◽  
Vol 23 (12) ◽  
pp. 3449-3458 ◽  
Author(s):  
Jinhua Cai ◽  
Jiangen Huang ◽  
Shichen Xu ◽  
Ling Yuan ◽  
Xueren Huang ◽  
...  

2019 ◽  
Vol 790 ◽  
pp. 405-412 ◽  
Author(s):  
Ilya B. Polovov ◽  
Yakov S. Bataev ◽  
Yurii D. Afonin ◽  
Vladimir A. Volkovich ◽  
Andrey V. Chukin ◽  
...  
Keyword(s):  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 615 ◽  
Author(s):  
Chang Wang ◽  
Huan Wang ◽  
Dan Zhao ◽  
Xianqi Wei ◽  
Xin Li ◽  
...  

A novel hybrid structure sensor based on cobalt carbonate hydroxide hydrate (CCHH) and reduced graphene oxide (RGO) was designed for room temperature NH3 detection. This hybrid structure consisted of CCHH and RGO (synthesized by a one-step hydrothermal method), in which RGO uniformly dispersed in CCHH, being used as the gas sensing film. The resistivity of the hybrid structure was highly sensitive to the changes on NH3 concentration. CCHH in the hybrid structure was the sensing material and RGO was the conductive channel material. The hybrid structure could improve signal-to-noise ratio (SNR) and the sensitivity by obtaining the optimal mass proportion of RGO, since the proportion of RGO was directly related to sensitivity. The gas sensor with 0.4 wt% RGO showed the highest gas sensing response reach to 9% to 1 ppm NH3. Compared to a conventional gas sensor, the proposed sensor not only showed high gas sensing response at room temperature but also was easy to achieve large-scale production due to the good stability and simple synthesis process.


Sign in / Sign up

Export Citation Format

Share Document