Hydrometallurgical preparation of lithium aluminum carbonate hydroxide hydrate, Li2Al4(CO3)(OH)12·3H2O from aluminate solution

2020 ◽  
Vol 155 ◽  
pp. 106470 ◽  
Author(s):  
Andrey Kropachev ◽  
Igor Kalabskiy
1997 ◽  
Vol 496 ◽  
Author(s):  
M. T. Nemeth ◽  
R. B. Ford ◽  
T. A. Taylor

ABSTRACTLithium aluminate, LiA1O2is a ceramic powder which is used as the porous solid support for the electrolyte in molten carbonate fuel cells (MCFCs). It has previously been reported that gamma LiAlO2will convert to lithium aluminum carbonate hydroxide hydrate, Li2Al4(CO3)(OH)123H2O and Li2CO3when exposed to water vapor and carbon dioxide. We compare three techniques, weight gain, carbonate content and x-ray diffraction to measure the amount of conversion. The reaction may involve amorphous intermediates and no one technique by itself is satisfactory to study the conversion.


1996 ◽  
Vol 11 (4) ◽  
pp. 312-317 ◽  
Author(s):  
Susan Jacob Beckerman ◽  
Robert B. Ford ◽  
Mark T. Nemeth

Gamma-phase lithium aluminate (LiAlO2) is a ceramic powder used in molten carbonate fuel cells (MCFCs) and in other nuclear and ceramic applications. Upon exposure to water vapor and carbon dioxide at 25 °C, we have observed that gamma-LiAlO2 converts to lithium aluminum carbonate hydroxide hydrate, Li2Al4(CO3)(OH)12·3H2O(LACHH) and Li2CO3. The conversion was observed by X-ray diffraction (XRD) and carbonate analysis. An equation for the conversion is given, and the morphology is determined by scanning electron microscopy. A high-temperature XRD study and thermogravimetric/differential thermal analysis (TGA/DTA) showed that LACHH decomposes at 250 °C. The decomposition products of LACHH and Li2CO3 react to form first alpha-LiAlO2 and then gamma-LiAlO2 at temperatures of 650 and 1000 °C, respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yubing Yan

Developing efficient and low-cost replacements for noble metals as electrocatalysts for the oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ grown on the surface of carbon cloth through a facile one-step hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires 317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For the stability, there is no significant attenuation of current density after continuous operation 27 h. This work paves a facile way to the design and construction of electrocatalysts for the OER.


2018 ◽  
Vol 402 ◽  
pp. 388-393 ◽  
Author(s):  
Yan Qi Jin ◽  
Zhipeng Lin ◽  
Rui Zhong ◽  
Jilin Huang ◽  
Guofeng Liang ◽  
...  

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 615 ◽  
Author(s):  
Chang Wang ◽  
Huan Wang ◽  
Dan Zhao ◽  
Xianqi Wei ◽  
Xin Li ◽  
...  

A novel hybrid structure sensor based on cobalt carbonate hydroxide hydrate (CCHH) and reduced graphene oxide (RGO) was designed for room temperature NH3 detection. This hybrid structure consisted of CCHH and RGO (synthesized by a one-step hydrothermal method), in which RGO uniformly dispersed in CCHH, being used as the gas sensing film. The resistivity of the hybrid structure was highly sensitive to the changes on NH3 concentration. CCHH in the hybrid structure was the sensing material and RGO was the conductive channel material. The hybrid structure could improve signal-to-noise ratio (SNR) and the sensitivity by obtaining the optimal mass proportion of RGO, since the proportion of RGO was directly related to sensitivity. The gas sensor with 0.4 wt% RGO showed the highest gas sensing response reach to 9% to 1 ppm NH3. Compared to a conventional gas sensor, the proposed sensor not only showed high gas sensing response at room temperature but also was easy to achieve large-scale production due to the good stability and simple synthesis process.


2020 ◽  
Vol 12 (36) ◽  
pp. 40220-40228
Author(s):  
Shan Zhang ◽  
Bolong Huang ◽  
Liguang Wang ◽  
Xiaoyan Zhang ◽  
Haishuang Zhu ◽  
...  

2020 ◽  
Vol 59 (22) ◽  
pp. 16690-16702 ◽  
Author(s):  
Kannimuthu Karthick ◽  
Sugumar Subhashini ◽  
Rishabh Kumar ◽  
Sridhar Sethuram Markandaraj ◽  
Muthukumar Muthu Teepikha ◽  
...  

2016 ◽  
Vol 45 (38) ◽  
pp. 15155-15161 ◽  
Author(s):  
Fashen Chen ◽  
Xiaohe Liu ◽  
Zhian Zhang ◽  
Ning Zhang ◽  
Anqiang Pan ◽  
...  

Urchin-like cobalt oxide (Co3O4) hollow spheres can be successfully prepared by thermal decomposition of cobalt carbonate hydroxide hydrate (Co(CO3)0.5(OH)·0.11H2O) obtained by template-assisted hydrothermal synthesis.


Sign in / Sign up

Export Citation Format

Share Document