lithium aluminum
Recently Published Documents


TOTAL DOCUMENTS

1490
(FIVE YEARS 82)

H-INDEX

58
(FIVE YEARS 5)

Author(s):  
Nataliya Kalinina ◽  
Tetyana Nosova ◽  
Stella Mamchur ◽  
Nataliya Tsokur ◽  
Nikita Komarov

The effect of modification with dispersed compositions on the grain structure and mechanical properties of industrial aluminum alloys has been studied. Aluminum alloys of the Al-Si, Al-Mg-Sc, Al-Cu-Mn systems were modified with dispersed Mg2Si powder with a particle size of up to 200 nm. The amount of modifier to be added to the melt is calculated. The physicochemical properties of dispersed Mg2Si have been studied. Melting of the AMg6, 1570, 2219, AK9ch alloys in the initial state and with the treatment of Mg2Si melts have been carried out. The action of insoluble applications, isomorphic to aluminum, the similarity of the influence of soluble elements holds only when the amount of insoluble addition exceeds the number of crystals formed arbitrarily under the same conditions. Thus, with an increase in the amount of insoluble addition, in particular silicon carbide particles, the grain size first decreases and then remains constant. The mechanism of the influence of dispersed particles of magnesium silicide on the formation of the structure of hypoeutectic aluminum alloys during crystallization is that their bulk is pushed out by the crystallization front into the liquid phase and participates in the refinement of the structural components of the alloy. To determine the optimal amount of silicon carbide modifier, industrial melting and testing were performed on specimens that underwent heat treatment according to the T6 mode (quenching and artificial aging). The quality of cast aluminum alloys during modification depends on many factors: the nature of the dispersed phase, the temperature of the melt, and the modes of its mixing with the introduction of particles. Dependences of the particle size and the amount of the modifier on the mechanical properties of the alloys have been established. The mechanism of interaction of the modifier with aluminum melt during crystallization has been established. In industrial experiments, the most effective size of SiC particles for increasing the σm of the AK9ch alloy from 115 to 260 MPa in the as-cast state has been established. The optimal content of Mg2Si (0.10 %) for increasing the σm of aluminum alloys has been determined.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3289
Author(s):  
Rihab Chikhaoui ◽  
Zoulikha Hebboul ◽  
Mohamed Abdelilah Fadla ◽  
Kevin Bredillet ◽  
Akun Liang ◽  
...  

Here we report on the non-hydrothermal aqueous synthesis and characterization of nanocrystalline lithium aluminum iodate, LiAl(IO3)4. Morphological and compositional analyses were carried out by using scanning electron microscopy (SEM) and energy-dispersive X-ray measurements (EDX). The optical and vibrational properties of LiAl(IO3)4 have been studied by UV-Vis and IR spectroscopy. LiAl(IO3)4 is found to crystallize in the non-centrosymmetric, monoclinic P21 space group, contrary to what was reported previously. Theoretical simulations and Rietveld refinements of crystal structure support this finding, together with the relatively high Second Harmonic Generation (SGH) response that was observed. Electronic band structure calculations show that LiAl(IO3)4 crystal has an indirect band gap Egap=3.68 eV, in agreement with the experimental optical band gap Egap=3.433 eV. The complex relative permittivity and the refraction index of LiAl(IO3)4 have also been calculated as a function of energy, as well as its elastic constants and mechanical parameters. LiAl(IO3)4 is found to be a very compressible and ductile material. Our findings imply that LiAl(IO3)4 is a promising material for optoelectronic and non -linear optical applications.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7386
Author(s):  
Agata Stempkowska

In this paper, the system of natural mineral alkali fluxes used in typical mineral industry technologies was analyzed. The main objective was to lower the melting temperature of the flux systems. The research has shown that the best melting parameters in the Ca–Mg– (Li,Na,K) system were characterized by the composition: A-eutectic 20% and wollastonite 80%, and it was reached at temperature 1140 °C; in addition, this set had the widest melting interval. Selected thermal parameters of mineral flux systems were also calculated. The technological properties of mineral composites such as shrinkage and brightness were also analyzed.


2021 ◽  
Vol 122 ◽  
pp. 111705
Author(s):  
W. Rittisut ◽  
N. Wantana ◽  
Y. Ruangtaweep ◽  
P. Mool-am-kha ◽  
J. Padchasri ◽  
...  

Author(s):  
Aliakbar Mohammadzadeh ◽  
Sepideh Sharif ◽  
Volodymyr Semeniuchenko ◽  
Norman Townsend ◽  
Andrew D. Corbett ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document