Synthesis of fine particle size lithium aluminate for application in molten carbonate fuel cells

1979 ◽  
Vol 14 (10) ◽  
pp. 1357-1368 ◽  
Author(s):  
K. Kinoshita ◽  
J.W. Sim ◽  
G.H. Kucera
2012 ◽  
Vol 519 ◽  
pp. 87-91 ◽  
Author(s):  
Xia Ni Huang ◽  
Zhang Han Wu ◽  
Ke Cao ◽  
Wen Zeng ◽  
Chun Ju Lv ◽  
...  

In the present investigation, the Al-C-KCl composite powders were prepared by a ball milling processing in an attempt to improve the hydrogen evolution capacity of aluminum in water. The results showed that the hydrogen generation reaction is affected by KCl amount, preparation processing, initial aluminum particle size and reaction temperature. Increasing KCl amount led to an increased hydrogen generation volume. The use of aluminum powder with a fine particle size could promote the aluminum hydrolysis reaction and get an increased hydrogen generation rate. The reaction temperature played an important role in hydrogen generation rate and the maximum hydrogen generation rate of 44.8 cm3 min-1g-1of Al was obtained at 75oC. The XRD results identified that the hydrolysis byproducts are bayerite (Al(OH)3) and boehmite (AlOOH).


2017 ◽  
Vol 42 (25) ◽  
pp. 16235-16243 ◽  
Author(s):  
Mihui Lee ◽  
Chang-Whan Lee ◽  
Hyung-Chul Ham ◽  
Jonghee Han ◽  
Sung Pil Yoon ◽  
...  

Author(s):  
K. Hemmes ◽  
M. Houwing ◽  
N. Woudstra

Direct carbon fuel cells (DCFCs) have great thermodynamic advantages over other high temperature fuel cells such as molten carbonate fuel cells (MCFCs) and solid oxide fuel cells. They can have 100% fuel utilization, no Nernst loss (at the anode), and the CO2 produced at the anode is not mixed with other gases and is ready for re-use or sequestration. So far, only studies have been reported on cell development. In this paper, we study the performance of a CO2-producing DCFC system model. The theoretically predicted advantages that are confirmed on a bench scale are also confirmed on a system level, except for the production of pure CO2. Net system efficiencies of around 78% were found for the developed system. An exergy analysis of the system shows where the losses in the system occur. If the cathode of the DCFC must be operated as a standard MCFC cathode, the required CO2 at the cathode is the reason why a large part of the pure CO2 from the anode is recycled and mixed with the incoming air and cannot be used directly for sequestration. Bench scale studies should be performed to test the minimum amount of CO2 needed at the cathode. This might be lower than in a standard MCFC operation due to the pure CO2 at the anode side that enhances diffusion toward the cathode.


2014 ◽  
Vol 63 ◽  
pp. 6517-6526 ◽  
Author(s):  
Maurizio Spinelli ◽  
Matteo C. Romano ◽  
Stefano Consonni ◽  
Stefano Campanari ◽  
Maurizio Marchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document