Preparation and crystal structure of garnet-type calcium zirconium germanate Ca4ZrGe3O12

2016 ◽  
Vol 31 (4) ◽  
pp. 292-294 ◽  
Author(s):  
V. D. Zhuravlev ◽  
A. P. Tyutyunnik ◽  
N. I. Lobachevskaya

A polycrystalline sample of Ca4ZrGe3O12 was synthesized using the nitrate–citrate method and heated at 850–1100 °C. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is of the garnet type with a cubic unit-cell parameter [a = 12.71299(3) Å] and the space group Ia$\bar 3$d. The structural formula is presented as Ca3[CaZr]octa[Ge]tetraO12.

2017 ◽  
Vol 32 (4) ◽  
pp. 255-260
Author(s):  
Irina Yu. Kotova ◽  
Aleksandra A. Savina ◽  
Elena G. Khaikina

A polycrystalline sample of a new triple molybdate AgMg3Ga(MoO4)5 was obtained by solid-state reaction techniques. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is isotypic with NaMg3In(MoO4)5 (sp. gr. P$\bar 1$). In the structure pairs of edge-shared (Mg, Ga)O6,  octahedra are connected by common vertices to form a three-dimensional framework. Large framework cavities involve Ag+ cations. The title compound was found to melt at 1079 K.


2019 ◽  
Vol 289 ◽  
pp. 108-113
Author(s):  
Romana Iryna Martyniak ◽  
Nataliya Muts ◽  
Olga Sichevych ◽  
Horst Borrmann ◽  
Matej Bobnar ◽  
...  

The crystal structure of the (Cr,Ni)4Si phase with and without Co was refined from X-ray powder diffraction data. The compound crystallises with an Au4Al-type structure (Pearson symbol cP20, space group P213): unit-cell parameter a = 0.611959(6) nm for the composition (Cr0.312Ni0.688)4Si, a = 0.612094(6) nm for (Cr0.375Ni0.625)4Si, and a = 0.612316(6) nm for (Cr0.337Co0.063Ni0.600)4Si. The magnetic susceptibility was measured in external fields up to 7 T at temperatures between 1.8 and 400 K. The three investigated samples exhibited paramagnetic behaviour described by the modified Curie-Weiss law: χ0 = 146∙10-6 emu g-at.-1, μeff = 0.21 μB/atom, θP = -13 K for (Cr0.312Ni0.688)4Si; χ0 = 158∙10-6 emu g-at.-1, μeff = 0.20 μB/atom, θP = -15 K for (Cr0.375Ni0.625)4Si; χ0 = 169∙10-6 emu g-at.-1, μeff = 0.18 μB/atom, θP = -52 K for (Cr0.337Co0.063Ni0.600)4Si.


2000 ◽  
Vol 15 (4) ◽  
pp. 227-233 ◽  
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
Q. Huang ◽  
R. S. Roth

The crystal structure of the low-temperature oxidized form of Sr49.5Ca16.5Bi34O151 has been determined using a combination of neutron, synchrotron, and laboratory X-ray powder diffraction data. The structure is pseudo-orthorhombic; systematic absences and successful refinement indicated the true structure to be monoclinic, with space group P2l/n. Structural refinement using only neutron powder data yielded the lattice parameters a=8.38 898(29) Å, b=5.99 334(21) Å, c=5.89 586(20) Å, β=89.997(8)°, and V=296.43(3) Å3. This compound is a distorted perovskite phase [described in the perovskite ABO3 formula as Sr(Bi0.7Ca0.3)O3] with ordering of the M-site cations, resulting in the formula A2MM′O6. In this ordered structure, the A sites are solely occupied by Sr, the M sites mainly by Bi, while on the M′ sites Bi and Ca are distributed in an approximate ratio of 2:3. The MO6 and M′O6 octahedra share corners, and are tilted with respect to the neighboring layers with an angle of ∼15° around all three axes. The tilt system symbol is a+a−a− according to Glazer notation. All Bi ions are in the 5+ oxidation state.


1997 ◽  
Vol 12 (4) ◽  
pp. 242-244 ◽  
Author(s):  
Y. T. Zhu ◽  
P. S. Baldonado ◽  
E. J. Peterson ◽  
D. E. Peterson ◽  
F. M. Mueller

Rietveld analysis of X-ray powder diffraction data was performed on SmBa4Cu3O8.5+δ, which was synthesized from precursors Sm2O3, BaO2, and CuO at 1000 °C in an oxygen atmosphere. SmBa4Cu3O8.5+δ has a cubic perovskite-related structure that is isostructural with YBa4Cu3O8.5+δ, and a doubled perovskite unit cell parameter of 8.177 90±0.000 04 Å.


2003 ◽  
Vol 18 (1) ◽  
pp. 56-59 ◽  
Author(s):  
Herman Koster ◽  
Fre´de´ric H. B. Mertins

X-ray powder diffraction data for Ba0.5Sr0.5Co0.8Fe0.2O3−δ are reported. The powder was prepared using a metal-EDTA complexing method. The XRD data could be fitted with a primitive cubic unit cell in space group Pm3m (No. 221). The Rietveld refined unit cell parameter is ac=0.398 30(3) nm with Z=1 and Dx=5.75 g/cm3.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


Author(s):  
Aleksandr N Zaloga ◽  
Sergey V Burakov ◽  
Igor S Yakimov ◽  
Konstantin A Gusev ◽  
Petr S Dubinin

Sign in / Sign up

Export Citation Format

Share Document