polycrystalline sample
Recently Published Documents


TOTAL DOCUMENTS

167
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Saheli Banerjee ◽  
Alka B Garg ◽  
H. K. Poswal

Abstract In this article we report the synthesis, characterization and high pressure investigation on technologically important, rare earth orthotantalate, EuTaO4. Single phase polycrystalline sample of EuTaO4 has been synthesized by solid state reaction method adopting monoclinic M'-type fergusonite phase with space group P2/c. Structural and vibrational properties of synthesized compound are investigated using synchrotron based x-ray powder diffraction, and Raman spectroscopic techniques respectively. Both the techniques show presence of an isostructural, first order, reversible phase transition near 17 GPa. Bulk modulus obtained by fitting the experimental pressure volume data for low pressure and high pressure phase is 136.0(3) and 162.8(21) GPa. High pressure phase is accompanied by an increase in coordination number around Ta atom from 6 to 8. First principles calculations under the frame work of density functional theory (DFT) also predicts the isostructural phase transition and change in coordination around Ta atom, corroborating the experimental findings.


Author(s):  
Zhongda Huang ◽  
Yihang Tong ◽  
Jake Bobowski

Abstract We describe a simple AC susceptometer built in-house that can be used to make high-resolution measurements of the magnetic susceptibility of high-temperature superconductors in an undergraduate physics lab. Our system, cooled using liquid nitrogen, can reach a base temperature of 77 K. Our apparatus does not require gas handling systems or PID temperature controllers. Instead, it makes use of a thermal circuit that is designed to allow the sample to cool on a time scale that is suitable for an undergraduate lab. Furthermore, the temperature drift rate at the superconducting transition temperature T c is low enough to allow for precise measurements of the complex magnetic susceptibility through T c, even for single-crystal samples with exceedingly sharp superconducting transitions. Using an electromagnet, we were able to apply static magnetic fields up to 63 mT at the sample site. By measuring the change in susceptibility as a function of the strength of an applied of static magnetic field, we were able to estimate the lower critical field H c1 of a single-crystal sample of optimally-doped YBa2Cu3O6.95 at 77 K. We also investigated the mixed state of a sintered polycrystalline sample of YBa2Cu3O6+y .


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6611
Author(s):  
Armando Galluzzi ◽  
Antonio Leo ◽  
Andrea Masi ◽  
Francesca Varsano ◽  
Angela Nigro ◽  
...  

We analyze the magnetic behavior of a CaKFe4As4 polycrystalline sample fabricated by a mechanochemically assisted synthesis route. By means of DC magnetization (M) measurements as a function of the temperature (T) and DC magnetic field (H) we study its critical parameters and pinning features. The critical temperature Tc has been evaluated by M(T) curves performed in Zero Field Cooling-Field Cooling conditions. These curves show the presence of a little magnetic background for temperatures above Tc, as also confirmed by the hysteresis loops M(H). Starting from the M(H) curves, the critical current density Jc of the sample has been calculated as a function of the field at different temperatures in the framework of the Bean critical state model. The Jc(H) values are in line with the ones reported in the literature for this typology of samples. By analyzing the temperature dependence of the critical current density Jc(T) at different magnetic fields, it has been found that the sample is characterized by a strong type pinning regime. This sample peculiarity can open perspectives for future improvement in the fabrication of this material.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Takahiro Yamada ◽  
Naoki Matsuo ◽  
Masanori Enoki ◽  
Hisanori Yamane

Abstract A new ternary sodium magnesium bismuthide, NaMgBi, has been synthesized from the constituent metals, and its crystal structure was determined by single-crystal X-ray diffraction. NaMgBi crystallizes in a tetragonal PbFCl-type structure corresponding to the space group P4/nmm, where Z = 2, a = 4.7123(4) and c = 7.8158(7) Å. The structure is composed of layers formed by edge-sharing Bi tetrahedra centered with Mg stacked in the c-axis direction, and these layers sandwich the Na atoms. First-principles computations based on density functional theory calculations have verified that the most stable atomic configuration is the one in which the Na and Mg atoms occupy the 2a and 2c sites, respectively. The electrical resistivity measured for a sintered polycrystalline sample of NaMgBi with a relative density of 70% was found to gradually decrease from 868 to 26.4 mΩ cm upon increasing the temperature from 297 to 506 K, and the Seebeck coefficient decreased from 273 to 180 μV K−1 upon increasing the temperature from 298 to 496 K. Electronic structure calculations have revealed that NaMgBi must be a semiconductor with a small band gap of ∼0.1 eV.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Xiang Chen ◽  
Shayuan Weng ◽  
Xing Yue ◽  
Tao Fu ◽  
Xianghe Peng

AbstractIn crystalline materials, grain boundary and anisotropy of crystal structure affect their mechanical properties. The effects of interfacial structure on the mechanical properties may be diverse when the multilayer film is loaded along different directions. In this work, we performed a series of molecular dynamics simulations of the tension of in-plane single and polycrystalline Cu/Pd multilayered films with cube-on-cube (COC) and twinned interfaces to explore the effects of the interfacial structure, loading direction and in-plane grain boundaries on their mechanical properties. The interfacial misfit dislocation lines become bent after relaxation, and the high temperature of 300 K was found as a necessary condition. When stretched along 〈110〉 direction, the strengthening effect of the COC interface is more noticeable; however, when stretched along 〈112〉 direction, the twin interface's strengthening effect is more visible, showing the anisotropic effect of interfacial structure on mechanical properties. However, in the in-plane honeycomb polycrystalline sample, the twin interface showed a pronounced strengthening effect, and no jogged dislocations were observed.


Author(s):  
Dominique Laniel ◽  
Jannes Binck ◽  
Björn Winkler ◽  
Sebastian Vogel ◽  
Timofey Fedotenko ◽  
...  

Carbonates containing CO4 groups as building blocks have recently been discovered. A new orthocarbonate, Sr2CO4 is synthesized at 92 GPa and at a temperature of 2500 K. Its crystal structure was determined by in situ synchrotron single-crystal X-ray diffraction, selecting a grain from a polycrystalline sample. Strontium orthocarbonate crystallizes in the orthorhombic crystal system (space group Pnma) with CO4, SrO9 and SrO11 polyhedra as the main building blocks. It is isostructural to Ca2CO4. DFT calculations reproduce the experimental findings very well and have, therefore, been used to predict the equation of state, Raman and IR spectra, and to assist in the discussion of bonding in this compound.


Author(s):  
Tasuku Uchimura ◽  
Fumitaka Takeiri ◽  
Kei Okamoto ◽  
Takashi Saito ◽  
Takashi Kamiyama ◽  
...  

Barium titanium oxyhydride BaTiO3–xHx is a promising functional material that exhibits H–/e– mixed conduction. Here we firstly report a direct synthesis of BaTiO3–xHx by mechanochemical method. The prepared polycrystalline sample...


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5215
Author(s):  
Aneta Ciupa-Litwa ◽  
Maciej Ptak ◽  
Edyta Kucharska ◽  
Jerzy Hanuza ◽  
Mirosław Mączka

Recently discovered hybrid perovskites based on hypophosphite ligands are a promising class of compounds exhibiting unusual structural properties and providing opportunities for construction of novel functional materials. Here, we report for the first time the detailed studies of phonon properties of manganese hypophosphite templated with methylhydrazinium cations ([CH3NH2NH2][Mn(H2PO2)3]). Its room temperature vibrational spectra were recorded for both polycrystalline sample and a single crystal. The proposed assignment based on Density Functional Theory (DFT) calculations of the observed vibrational modes is also presented. It is worth noting this is first report on polarized Raman measurements in this class of hybrid perovskites.


2020 ◽  
Vol 855 ◽  
pp. 177-182
Author(s):  
Mochammad Yan Pandu Akbar ◽  
Rieko Ishii ◽  
Agustinus Agung Nugroho

We investigated the stability of the high-spin state of the iron β-NaFeO2 based on the structural refinement. The oxidation of the Fe2+ ion in the as-synthesized sample is evidenced by its green color. Due to its sensitivity in air and CO2, this compound will decompose into a reddish Fe3+ state. The smaller crystal volume of the decomposed compound is mainly related to the shorter ionic radius of the high-spin state Fe3+ and this result will be compared to the single crystal sample. In contrast to the polycrystalline sample, the decomposition single crystal sample only taking place on the surface of the as-grown crystal.


Sign in / Sign up

Export Citation Format

Share Document