Identification of bipolar cell subtypes by protein kinase C-like immunoreactivity in the goldfish retina

1990 ◽  
Vol 5 (3) ◽  
pp. 223-230 ◽  
Author(s):  
Saburosuke Suzuki ◽  
Akimichi Kaneko

AbstractSubtypes of bipolar cells were identified by protein kinase C (PKC)-like immunoreactivity in the goldfish retina. The PKC-like immunoreactivity was visualized by either the avidin/biotin peroxidase method or immunofluorescence method. In frozen cross sections and in wholemounts, the monoclonal antibody against α species of PKC reacted with ON-type bipolar cells, identified by the location of axon terminals in sublamina b of the inner plexiform layer. OFF-type bipolar cells (identified by the location of the axon terminal in sublamina a of the inner plexiform layer) were not immunoreactive. The immunoreactive cells consisted of two subtypes; the rod-dominant ON-type with a large soma and a large bulbous axon terminal, and the cone-dominant ON-type with a small soma and small axon terminal. Antibodies against β and γ species of PKC did not react with any bipolar cells. Of the isolated bipolar cells, enzymatically dissociated from the goldfish retina, 59% were immunoreactive to the monoclonal antibody against α species of PKC. The immunoreactive isolated cells also consisted of two morphological types. Each of them had a morphology typical either to rod-dominant ON-type or to cone-dominant ON-type.

1991 ◽  
Vol 6 (5) ◽  
pp. 429-437 ◽  
Author(s):  
Danru Zhang ◽  
Hermes H. Yeh

AbstractIn the retina of a variety of vertebrate species, a monoclonal antibody against protein kinase C (PKC) has been shown to label preferentially bipolar cells. Although the functional consequences of PKC activation in these cells is yet to be revealed, the present study was motivated in part by the possibility that the antibody might be used as a selective marker for examining the development of bipolar cells in the rat retina. Here, the developmental pattern and the dynamic changes of retinal cells expressing PKC-like immunoreactivity (PKC-LI) were studied and analyzed throughout postnatal life until adulthood. Upon its initial detection by immunohistochemistry on postnatal day (PD)-10, faint PKC-LI was limited to the central region of the retina, labeling cell bodies located at the scleral margin of the inner nuclear layer (INL) adjacent to the outer plexiform layer (OPL). On subsequent days, PKC-LI spread progressively to the peripheral retina and axon terminal bulbs at the vitreal margin of theinner plexiform layer (IPL) began showing the first signs of immunoreactive labeling. Not until PD-15, the time of eye opening, did PKC-LI in these cells increase to the extent such that their thin axons were immunoreactive. Each of these axons traversed the entire thickness of the IPL and divided into two or three short branches before ending as enlarged terminal bulbs. The morphology and the location of PKC-LI cells in both the developing and adult retina observed in our study are consistent with them being rod bipolar cells. By the end of the fourth postnatal week, the rod bipolar cells appeared mature, resembling those found in the adult. Overall, more dynamic changes occurred at the axon terminal bulbs than at the cell bodies during the maturational process of rod bipolar cells. Interestingly, PKIC-LI was expressed precociusly in these cells when rat pups were reared in complete darkness starting from the day of birth.


2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


1993 ◽  
Vol 10 (2) ◽  
pp. 341-351 ◽  
Author(s):  
Helga Kolb ◽  
Li Zhang ◽  
Laura Dekorver

AbstractMonoclonal antibodies to the three isozymes of protein kinase C (PKC) (α, β, and γ) were applied to postmortem human retina. Immunostaining was done on wholemount, or cryostat-sectioned retina, and visualized after ABC/DAB procedures by light (LM) and electron (EM) microscopy.The PCK-α antibody stained rod bipolar cells throughout the retina. EM analysis confirmed they were PKC-α-immunoreactive (IR) on their characteristic dendritic and axonal synaptology. Putative blue cone bipolar cells with wide-field axon terminals, stratifying in s5 of the inner plexiform layer (IPL), were also PKC-α-IR, and EM showed them to engage in narrow-cleft ribbon junctions in blue cone pedicles.The PKC-β antibody stained cone bipolar cells, many amacrine cells, and most ganglion cells. Cone bipolar cells were stained all the way into the foveal center: both midget and diffuse varieties were included. The IPL was densely PKC-IR and individual neurons could not be identified on stratification patterns. EM of the outer plexiform layer (OPL) revealed that both flat and invaginating cone bipolar types were IR and that IR axon terminals were presynaptic in all strata of the IPL. The occurrence of PKC-β-IR bipolar axons in stratum 2 of the IPL suggests that OFF-center as well as ON-center types were included.The PKC-γ antibody gave inferior staining compared with results from the other two antibodies; however, two varieties of wide-field monostratified amacrine cell and a large-bodied ganglion cell type were discernible.PKC in one form or another appears to be a second messenger used in neurotransmission by both rod and cone systems and ON- and OFF-center systems in the human retina.


1991 ◽  
Vol 112 (6) ◽  
pp. 1241-1247 ◽  
Author(s):  
N Usuda ◽  
Y Kong ◽  
M Hagiwara ◽  
C Uchida ◽  
M Terasawa ◽  
...  

We report the immunohistochemical localization of protein kinase C isozymes (types I, II, and III) in the rabbit retina using the monospecific monoclonal antibodies MC-1a, MC-2a, and MC-3a. Using immunoblot analysis of partially purified protein kinase C preparations of rabbit retina, types II and III isozymes alone were detected. The activity of type III was the stronger. By light microscopic immunohistochemical analysis, retinal neurons were negative for type I and positive for type II and type III isozymes. Type II was more diffusely distributed through the retinal layers, but was distinctive in ganglion cells, bipolar cells, and outer segments. The immunoreactivity was stronger for type III isozyme, and it was observed in mop (rod) bipolar cells and amacrine cells. By using immunoelectron microscopy, the cytoplasm of the cell body, the axon, and dendrites of the mop bipolar cells were strongly immunoreactive for type III. The so-called rod bipolar cells were for the first time seen to form synapses with rod photoreceptor cells. These differential localizations of respective isozymes in retinal neurons suggest that each isozyme has a different site of function in each neuron.


Neuroreport ◽  
1996 ◽  
Vol 7 (13) ◽  
pp. 2176-2180 ◽  
Author(s):  
Cecilia F. Vaquero ◽  
Almudena Velasco ◽  
Pedro de la Villa

1988 ◽  
Vol 1 (3) ◽  
pp. 297-305 ◽  
Author(s):  
Masao Tachibana ◽  
Akimichi Kaneko

AbstractBipolar cells make reciprocal synapses with amacrine cells in the inner plexiform layer; both feedforward connections and feedback connections are present. The physiological properties of the feedback synapse have not been well described. Since some amacrine cells are thought to be GABAergic, we examined bipolar cells for feedback input from γ-aminobtyric acid (GABA)ergic amacrine cells. Solitary bipolar cells were dissociated enzymatically from the goldfish retina. Cells were voltage clamped with a patch pipette and their GABA sensitivity was examined. GABA evoked responses in all bipolar cells with a large axon terminal, which were identified to be the rod dominant ON type, and in some bipolar cells with a small axon terminal. The highest GABA sensitivity was located at the axon terminal. The least effective dose was as low as 100 nM. A small insignificant response of high threshold was evoked when GABA was applied to the dendrite and soma. GABA increased the Cl conductance and caused membrane hyperpolarization. The bipolar cells had the GABAA receptor coupled with a benzodiazepine receptor. The GABA-evoked response was not susceptible to Co ions, which suppressed the GABA-induced responses in turtle cones by 50% at 5 fiM concentration. Incomplete desensitization was observed, suggesting that the GABAergic pathway seems capable of transmitting signals tonically. The present results strongly indicate that the rod-dominant ON-type bipolar cells and some bipolar cells with a small axon terminal receive negative feedback inputs from GABAergic amacrine cells.


1990 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Heather M. Young ◽  
David I. Vaney

AbstractThis study has shown that the retinae of Prototherian (egg-laying) mammals possess two neuronal types that are present in non-mammalian retinae, but absent or morphologically different in the retinae of Eutherian (placental) mammals. First, endogenous serotonin-like immunoreactivity has been localized in a population of presumptive amacrine cells in the platypus retina, the first such report in a mammalian retina. Second, the protein kinase C-immunoreactive (PKC-IR) bipolar cells in the echidna retina appear similar to the PKC-IR bipolars in the chicken retina, in that their dendrites give rise to a Landolt's club and their axons are multistratified. By contrast, the PKC-IR rod bipolar cells in the rabbit and in the brushtail possum, a Metatherian (marsupial) mammal, have no Landolt's clubs and their axons form terminal lobes in the innermost stratum of the inner plexiform layer.


Sign in / Sign up

Export Citation Format

Share Document