Reversal potential of GABA-induced currents in rod bipolar cells of the rat retina

1991 ◽  
Vol 6 (4) ◽  
pp. 399-401 ◽  
Author(s):  
Masayuki Yamashita ◽  
Heinz Wässle

AbstractGABA-induced whole-cell currents were measured in rod bipolar cells dissociated from the adult rat retina. The patch-clamp electrode contained nystatin, which made the cell membrane electrically permeable without rupture, thus retarding the rate of diffusion of Cl– ions from the patch pipette to the cell interior. The reversal potential of the GABA-induced currents was around –70 mV at an extracellular Cl-–concentration of 149 mM. We conclude that GABA generates hyperpolarizing responses in rod bipolar cells of the rat retina.

1995 ◽  
Vol 12 (3) ◽  
pp. 501-507 ◽  
Author(s):  
Ralf Enz ◽  
Joachim Bormann

AbstractWe studied the expression of glycine receptor (GlyR) subunits and gephyrin in the adult rat retina. Reverse transcribed RNA was amplified by polymerase chain reaction (RT-PCR) with primers designed to recognize GlyR α1, α2, α3, β subunits, and gephyrin. Using RNA isolated from the whole retina, signals for all four GlyR subunits and gephyrin could be observed. In rod bipolar cells, in contrast, we detected a subset of GlyR subunits, α1 and β, and no gephyrin. Patch-clamp recording employing two subtype-specific blockers of the GlyR, picrotoxinin and cyanotriphenylborate (CTB), indicated that the GlyR in rod bipolar cells is a heteromeric protein composed of the α1 and β subunit. Moreover, the absence of detectable amounts of gephyrin mRNA suggests that the anchor protein is not required for the function of GlyRs in rod bipolar cells.


1990 ◽  
Vol 4 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Hermes H. Yeh ◽  
Maria B. Lee ◽  
Jane E. Cheun

AbstractThis paper describes experiments on GABA-activated whole-cell membrane currents in bipolar cells freshly isolated from the adult rat retina. The main goal was to determine whether bipolar cell responses to GABA could be resolved in terms of mediation by the GABAA receptor, the GABAB receptor, or both. Bipolar cells were isolated by gentle enzymatic dissociation and identified by their distinct morphology. GABA agonists and antagonists were applied focally by pressure and the resultant currents were recorded under whole-cell voltage clamp. In all bipolar cells tested, GABA (0.1–100 μM) induced a monophasic response associated with a conductance increase (IGABA). The shift in reversal potential for IGABA as a function of pipet [CI] paralleled that predicted based on the Nernst equation for Cl−. IGABA was mimicked by muscimol (5–20 μM) and antagonized by bicuculline (20–100 μM). Baclofen (0.1–1.0 mM) produced no apparent conductance change. “Hot spots” of sensitivity to GABA which might be associated with regions of synaptic contact were not found; both the soma and processes of all bipolar cells were responsive to focally applied GABA. Furthermore, all bipolar cells tested responded to glycine.In conclusion, we have established the presence of GABAA receptors on rat retinal bipolar cells. Our data suggest further that these cells lack GABAB receptors. Finally, our observation that bipolar cells in the rat retina are relatively homogeneous in terms of their sensitivity to GABA and glycine lead us to postulate that the functional significance of the presence of receptors and their distribution on a neuron may be dictated more by the topography of the presynaptic inputs than by its inherent chemosensitivity.


2010 ◽  
Vol 30 (6) ◽  
pp. 2330-2339 ◽  
Author(s):  
A. E. Chavez ◽  
W. N. Grimes ◽  
J. S. Diamond

1990 ◽  
Vol 63 (4) ◽  
pp. 860-876 ◽  
Author(s):  
A. Karschin ◽  
H. Wassle

1. Bipolar cells were isolated from adult rat retinas after enzymatic and mechanical treatment. The cells could be unequivocally identified from their morphology because of high retention of their axon and dendritic processes after isolation. 2. Protein kinase C (PKC) immunoreactivity performed on sections of the rat retina labeled rod bipolar cells and a few amacrine cells. Virtually all bipolar cells in the dissociates expressed PKC immunoreactivity and were, therefore, rod bipolar cells. 3. Rod bipolar cells were examined with the tight-seal whole-cell and excised-patch recording techniques. Resting potentials of the isolated cells recorded under current-clamp conditions showed a broad unimodal distribution around -37 mV. 4. Membrane depolarization from a holding potential of -90 mV resulted in an outward current. A fast sodium inward current was not observed. Membrane hyperpolarization from a holding potential of -40 mV activated an inwardly rectifying current. 5. gamma-Aminobutyric acid (GABA) and glycine, the putative retinal neurotransmitters that mediate the bipolar cells' receptive field surround in vivo, activated chloride conductances in almost all isolated bipolar cells. GABA- and glycine-evoked currents were both desensitizing and could be antagonized by the classical blockers bicuculline, picrotoxin, and strychnine, respectively. 6. Pressure application of the drugs from fine microcapillaries to various parts of the isolated cells suggests a high GABA sensitivity at the axonal endings compared with either the somatic or dendritic region. A similar distribution was not found for glycine. On the contrary, glycine-induced single-channel events with main conductances of 52 and 34 pS were recorded from membrane patches excised from the cells' somata. 7. Conductances induced by glutamate and several excitatory amino acid agonists were observed in a number of the cells. Application of the glutamate agonist 2-amino-4-phosphonobutyric acid (APB) induced an inward current at negative holding potentials associated with the opening of ion channels. In only 5 of 93 cells, APB closed ion channels, leading to a decrease in membrane conductance.


1995 ◽  
Vol 74 (2) ◽  
pp. 856-875 ◽  
Author(s):  
M. A. Gillette ◽  
R. F. Dacheux

1. Voltage- and ligand-gated currents were recorded from solitary rabbit rod bipolar cells using the whole cell patch-clamp technique. The rod bipolar cell forms a single, stereotypical physiological and morphological class of cells that was easily identified from other neurons and support cells after enzymatic and mechanical dissociation from isolated retina. Protein kinase C immunoreactivity confirmed the validity of using a purely morphological identification of this cell type. 2. Voltage steps in 15-mV increments from a holding potential of -45 mV elicited a large outward current activated near -30 mV. These voltage-gated currents were eliminated by using equimolar substitutions of Cs+ and tetraethylammonium+ for K+ in the pipette, indicating that they represent a mixture of K+ currents. 3. The putative inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated inward Cl- currents when pressure-applied from pipettes placed near the axon terminals of rod bipolar cells, which were voltage-clamped at -45 mV. With changes in intracellular or extracellular Cl- concentration, the reversal potential of these ligand-gated currents changed as predicted by the Nernst equation for Cl- activity. The dose-response curves for GABA and glycine were sigmoidal with saturating concentrations of 100 and 300 microM, respectively. 4. GABA-activated currents were 1) reversibly reduced by the allosteric inhibitor picrotoxin and the competitive antagonist bicuculline; 2) potentiated by the benzodiazepine diazepam and the barbiturate barbital sodium; and 3) indistinguishable from muscimol-activated currents. There was no response to the GABAB agonist baclofen. Collectively, these data strongly suggest that the GABA-activated currents in rabbit rod bipolar cells are mediated by the GABAA receptor. This is similar to the GABA-activated currents in other mammalian rod bipolar cells. 5. Application of the conformationally restricted GABA analogue cis-4-aminocrotonic acid (CACA) failed to elicit a response, whereas the conformationally extended GABA analogue trans-4-aminocrotonic acid (TACA) elicited a response similar to that of GABA. Although bicuculline appeared to suppress the GABA-activated current slightly more than the TACA-activated current (not significant using Student's t-distribution), GABA- and TACA-activated currents were equally suppressed by picrotoxin and equally enhanced by diazepam and barbital sodium. These data, coupled with the inefficacy of CACA, argue against the existence of a GABAC-type channel in the rod bipolar cell of the rabbit and suggest that GABA and TACA were activating the same GABAA receptor-channel complex.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (6) ◽  
pp. 2923-2936 ◽  
Author(s):  
Espen Hartveit

Reciprocal synaptic interactions between rod bipolar cells and amacrine cells in the rat retina. Reciprocal synaptic transmission between rod bipolar cells and presumed A17 amacrine cells was studied by whole cell voltage-clamp recording of rod bipolar cells in a rat retinal slice preparation. Depolarization of a rod bipolar cell evoked two identifiable types of Ca2+ current, a T-type current that activated at about −70 mV and a current with L-type pharmacology that activated at about −50 mV. Depolarization to greater than or equal to −50 mV also evoked an increase in the frequency of postsynaptic currents (PSCs). The PSCs reversed at ∼ E Cl (the chloride equilibrium potential), followed changes in E Cl, and were blocked by γ-aminobutyric acidA (GABAA) and GABAC receptor antagonists and thus were identified as GABAergic inhibitory PSCs (IPSCs). Bipolar cells with cut axons displayed the T-type current but lacked an L-type current and depolarization-evoked IPSCs. Thus L-type Ca2+ channels are placed strategically at the axon terminals to mediate transmitter release from rod bipolar cells. The IPSCs were blocked by the non- N-methyl-d-aspartate (non-NMDA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, indicating that non-NMDA receptors mediate the feed-forward bipolar-to-amacrine excitation. The NMDA receptor antagonist 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid had no consistent effect on the depolarization-evoked IPSCs, indicating that activation of NMDA receptors is not essential for the feedforward excitation. Tetrodotoxin (a blocker of voltage-gated Na+channels) reversibly suppressed the reciprocal response in some cells but not in others, indicating that graded potentials are sufficient for transmitter release from A17 amacrine cells, but suggesting that voltage-gated Na+ channels, under some conditions, can contribute to transmitter release.


1995 ◽  
Vol 268 (3) ◽  
pp. H962-H973 ◽  
Author(s):  
N. R. Sharma ◽  
M. J. Davis

Substance P (SP) induces an elevation in cytosolic Ca2+ concentration ([Ca2+]i) in porcine coronary artery endothelial cells by way of Ca2+ influx and release from intracellular stores. We tested the hypothesis that SP-induced Ca2+ influx occurs due to activation of a Ca(2+)-permeable influx pathway coupled to depletion of intracellular stores. With the use of the perforated patch technique and fura 2 microfluorimetry, a fivefold greater increase in [Ca2+]i per unit decrease in membrane potential was obtained in the presence of SP (10 nM) compared with resting state, implying that SP increased Ca2+ conductance. When K+ channels were blocked, SP activated a net inward current with a reversal potential (2.5 +/- 1 mV) not significantly different from that (2 +/- 1 mV) for inward current recorded in response to store depletion by (2,5-di-tert-butylhydroquinone) (BHQ, 10 microM). Increasing bath [Ca2+] induced a similar shift in reversal potential for SP- and BHQ-induced currents. Inositol 1,4,5-trisphosphate (20 microM), applied through the patch pipette, activated an inward current with Ca2+ selectivity similar to SP- and BHQ-activated currents. Dialysis of cells with heparin (5 mg/ml) completely blocked SP-induced inward current but not BHQ-induced current. These results suggest that the SP-induced increase in Ca2+ conductance can be completely explained by activation of a Ca(2+)-permeable influx pathway coupled to depletion of intracellular stores.


2018 ◽  
Vol 133 ◽  
pp. 38-50 ◽  
Author(s):  
Gong Zhang ◽  
Xiao-Hua Wu ◽  
Guo-Zhong Xu ◽  
Shi-Jun Weng ◽  
Xiong-Li Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document