A sustained input to the direction-selective mechanism in cat striate cortex neurons

1994 ◽  
Vol 11 (6) ◽  
pp. 1083-1092 ◽  
Author(s):  
Curtis L. Baker ◽  
Max S. Cynader

AbstractDirection-selective neurons in cat striate cortex were tested with bar-shaped stimuli, sequentially flashed at spatially displaced positions chosen to elicit maximal direction selectivity. Temporally overlapping flash exposures of prolonged duration (400–1000 ms) were employed at a series of onset asynchronies to explore the nature of temporal tuning of the direction-selective mechanism. In most neurons studied, direction selectivity was found to be supported by a surprisingly broad range of stimulus onset asynchronies, which was greater for longer exposure durations. These findings imply the existence of a sustained input to the direction-selective mechanism, in spite of the relatively transient nature of most cortical neurons' step responses. A model is described to illustrate how different front-end temporal filters can affect the dependence of two-flash direction selectivity on stimulus onset asynchrony. The versions of the model which successfully predict the form of the observed responses are those which combine inputs from sustained and transient filters.

1988 ◽  
Vol 59 (4) ◽  
pp. 1314-1330 ◽  
Author(s):  
S. G. Marlin ◽  
S. J. Hasan ◽  
M. S. Cynader

1. The selectivity of adaptation to unidirectional motion was examined in neurons of the cat striate cortex. Following prolonged stimulation with a unidirectional high-contrast grating, the responsivity of cortical neurons was reduced. In many units this decrease was restricted to the direction of prior stimulation. This selective adaptation produced changes in the degree of direction selectivity of the cortical units (as measured by the ratio of the response to motion in the preferred direction to that in the nonpreferred direction). 2. The initial strength of the directional preference of a given cortical unit did not determine the degree of direction-selective adaptation. Indeed, even non-direction-selective units could exhibit pronounced direction-selective adaptation. The degree of direction-selective adaptation was also independent of the overall decrease in responsivity during adaptation. 3. There was no difference between simple and complex cells in the total amount of adaptation observed. The selectivity of the adaptation, however, did differ between these two cell types. As a group, simple cells showed significant direction-selective adaptation, whereas complex cells did not. The directional preference of most simple cells decreased following preferred direction adaptation and many highly direction selective simple cells became non-direction selective. In addition, simple cells became significantly more direction selective following nonpreferred direction adaptation. 4. Some complex cells also demonstrated direction-selective adaptation. There was, however, much more variability among complex cells than simple cells. Some complex cells actually increased direction selectivity following preferred direction adaptation. These differences between simple and complex cells suggest that changes in direction selectivity following unidirectional adaptation are not due to simple neuronal fatigue of the unit being recorded, but depend on selective adaptation of afferent inputs to the unit. 5. The spontaneous activity of many cortical neurons decreased following preferred direction adaptation but increased following adaptation in the nonpreferred direction. The response to a stationary grating also decreased following preferred direction adaptation. However, there was very little change in the response to a stationary grating following adaptation in the nonpreferred direction.


1991 ◽  
Vol 66 (2) ◽  
pp. 505-529 ◽  
Author(s):  
R. C. Reid ◽  
R. E. Soodak ◽  
R. M. Shapley

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude of the preferred response but overestimates the nonpreferred response. 2. The main paradigm consisted of comparing the responses of simple cells to contrast reversal sinusoidal gratings with their responses to drifting gratings (of the same orientation, contrast, and spatial and temporal frequencies) in both directions of motion. Although it is known that simple cells display spatiotemporally inseparable responses to contrast reversal gratings, this spatiotemporal inseparability is demonstrated here to predict a certain amount of direction selectivity under the assumption that simple cells sum their inputs linearly. 3. The linear prediction of the directional index (DI), a quantitative measure of the degree of direction selectivity, was compared with the measured DI obtained from the responses to drifting gratings. The median value of the ratio of the two was 0.30, indicating that there is a significant nonlinear component to direction selectivity. 4. The absolute magnitudes of the responses to gratings moving in both directions of motion were compared with the linear predictions as well. Whereas the preferred direction response showed only a slight amount of facilitation compared with the linear prediction, there was a significant amount of nonlinear suppression in the nonpreferred direction. 5. Spatiotemporal inseparability was demonstrated also with stationary temporally modulated bars. The time course of response to these bars was different for different positions in the receptive field. The degree of spatiotemporal inseparability measured with sinusoidally modulated bars agreed quantitatively with that measured in experiments with stationary gratings. 6. A linear prediction of the responses to drifting luminance borders was compared with the actual responses. As with the grating experiments, the prediction was qualitatively accurate, giving the correct preferred direction but underestimating the magnitude of direction selectivity observed.(ABSTRACT TRUNCATED AT 400 WORDS)


1986 ◽  
Vol 55 (6) ◽  
pp. 1136-1152 ◽  
Author(s):  
C. L. Baker ◽  
M. S. Cynader

Responses of direction-selective neurons in cat striate cortex (area 17) were studied with flashed-bar stimuli. Spatial parameters of interactions within the receptive field giving rise to direction selectivity and of receptive-field subunits were quantitatively determined for the same cells and correlated. A bar stimulus flashed sequentially at two nearby locations in the receptive field produced direction-selective behavior comparable with that elicited by continuously moving stimuli. Each cell exhibited a characteristic optimal spatial displacement, Dopt, for which responses in the presumed preferred and null directions were maximally distinct. In all cases, Dopt was much smaller than the receptive-field size. The spatial structure of receptive fields in simple cells was studied using single narrow-bar stimuli flashed at different locations in the receptive field. The resulting line-weighting function exhibited alternating regions of ON and OFF responses having a characteristic spatial period or wavelength, lambda. Spatial subunit structure in complex cells was determined by flashing two bars simultaneously in the receptive field. The response as a function of bar separation was again a wavelike function having a spatial wavelength, lambda. Values of the optimal displacement for direction selectivity, Dopt, showed a clear relationship with the spatial wavelength, lambda, for a given unit. Dopt was also correlated to a somewhat lesser degree with receptive-field size. Generally, the ratio of Dopt to lambda was approximately 1/10 to 1/4, in agreement with theoretical predictions by Marr and Poggio. Taken together with the findings of Movshon et al., these results indicate a systematic relationship between Dopt and the spatial frequency of a sinusoidal grating, which is optimal for that cell. Such a relationship is consistent with the results of human psychophysical experiments on apparent motion.


1976 ◽  
Vol 39 (3) ◽  
pp. 512-533 ◽  
Author(s):  
J. R. Wilson ◽  
S. M. Sherman

1. Receptive-field properties of 214 neurons from cat striate cortex were studied with particular emphasis on: a) classification, b) field size, c) orientation selectivity, d) direction selectivity, e) speed selectivity, and f) ocular dominance. We studied receptive fields located throughtout the visual field, including the monocular segment, to determine how receptivefield properties changed with eccentricity in the visual field.2. We classified 98 cells as "simple," 80 as "complex," 21 as "hypercomplex," and 15 in other categories. The proportion of complex cells relative to simple cells increased monotonically with receptive-field eccenticity.3. Direction selectivity and preferred orientation did not measurably change with eccentricity. Through most of the binocular segment, this was also true for ocular dominance; however, at the edge of the binocular segment, there were more fields dominated by the contralateral eye.4. Cells had larger receptive fields, less orientation selectivity, and higher preferred speeds with increasing eccentricity. However, these changes were considerably more pronounced for complex than for simple cells.5. These data suggest that simple and complex cells analyze different aspects of a visual stimulus, and we provide a hypothesis which suggests that simple cells analyze input typically from one (or a few) geniculate neurons, while complex cells receive input from a larger region of geniculate neurons. On average, this region is invariant with eccentricity and, due to a changing magnification factor, complex fields increase in size with eccentricity much more than do simple cells. For complex cells, computations of this geniculate region transformed to cortical space provide a cortical extent equal to the spread of pyramidal cell basal dendrites.


1996 ◽  
Vol 75 (3) ◽  
pp. 1163-1176 ◽  
Author(s):  
P. Hammond ◽  
J. N. Kim

1. Single binocularly driven complex neurons in cat striate cortex were recorded extracellularly under nitrous oxide-oxygen-halothane anesthesia and muscle relaxant. Orientational/directional tuning was initially derived for each eye in turn, with sine wave gratings of optimal spatial frequency and velocity, while the other eye viewed a uniform field. 2. For the dominant eye, previously concealed suppression was revealed against elevated levels of firing induced with a conditioning grating, drifting continuously in the preferred direction, simultaneously presented to the nondominant eye. During steady-state binocular conditioning, orientational/directional tuning was reestablished for the dominant eye. In a subset of cells, tuning curves during conditioning were also derived for the reverse configuration, i.e., nondominant eye tuning, dominant eye conditioning: results were qualitatively identical to those for conditioning through the nondominant eye. 3. Neurons were initially segregated into five groups, according to the observed suppression profiles induced at nonoptimal orientations/directions during conditioning: Type 1, suppression centered on orthogonal directions; Type 2, suppression around null directions; Type 3, null suppression combined with orthogonal suppression; Type 4, lateral suppression, maximal for directions immediately flanking those inducing excitation; and Type 5, the residue of cells, totally lacking suppression or showing complex or variable suppression. 4. Sharpness of (excitatory) tuning was correlated with directionality and with class of suppression revealed during binocular conditioning. Direction-biased neurons were more sharply orientation tuned than direction-selective neurons; similarly, neurons exhibiting lateral or orthogonal suppression during conditioning were more sharply tuned than neurons with null suppression. 5. Application of suboptimal directions of conditioning weakened the induced suppression but altered none of its main characteristics. 6. The relationship between excitation, suppression, and spatial frequency was investigated by comparing tuning curves for the dominant eye at several spatial frequencies, without and during conditioning. End-stopped neurons preferred lower spatial frequencies and higher velocities of motion than non-end-stopped neurons. Confirming previous reports, suppression in some neurons was still present for spatial frequencies above the cutoff frequency for excitation, demonstrating the tendency for suppression to be more broadly spatial frequency tuned than excitation. 7. Scatterplots of strength of suppression, in directions orthogonal and opposite maximal excitation, partially segregated neurons of Types 1-3. Clearer segregation of Types 1-4 was obtained by curve-fitting to profiles of suppression, and correlating half-width of tuning for suppression with the angle between the directions of optimal suppression and optimal excitation in each neuron. 8. Two interpretations are advanced-the first, based on three discrete classes of inhibition, orthogonal, null and lateral; the second, based on only two classes, orthogonal and null/lateral--in which null and lateral suppression are manifestations of the same inhibitory mechanism operating, respectively, on broadly tuned direction-selective or on sharply tuned direction-biased neurons. Orthogonal suppression may be untuned for direction, whereas lateral and null suppression are broadly direction tuned. Within each class, suppression is more broadly spatial frequency tuned than excitation. 9. It is concluded that orientational/directional selectivity of complex cells at different spatial frequencies is determined by the balance between tuned excitation and varying combinations of relatively broadly distributed or untuned inhibition.


2004 ◽  
Vol 91 (6) ◽  
pp. 2607-2627 ◽  
Author(s):  
Robert A. Frazor ◽  
Duane G. Albrecht ◽  
Wilson S. Geisler ◽  
Alison M. Crane

We measured the responses of striate cortex neurons as a function of spatial frequency on a fine time scale, over the course of an interval that is comparable to the duration of a single fixation (200 ms). Stationary gratings were flashed on for 200 ms and then off for 300 ms; the responses were analyzed at sequential 1-ms intervals. We found that 1) the preferred spatial frequency shifts through time from low frequencies to high frequencies, 2) the latency of the response increases as a function of spatial frequency, and 3) the poststimulus time histograms (PSTHs) are relatively shape-invariant across spatial frequency. The dynamic shifts in preferred spatial frequency appear to be a simple consequence of the latency shifts and the transient nature of the PSTH. The effects of these dynamic shifts on the coding of spatial frequency information are examined within the context of several different temporal integration strategies, and pattern-detection performance is determined as a function of the interval of integration, following response onset. The findings are considered within the context of related investigations as well as a number of functional issues: motion selectivity in depth, “coarse-to-fine” processing, direction selectivity, latency as a code for stimulus attributes, and behavioral response latency. Finally, we demonstrate that the results are qualitatively consistent with a simple feedforward model, similar to the one originally proposed in 1962 by Hubel and Wiesel, that incorporates measured differences in the response latencies and the receptive field sizes of different lateral geniculate nucleus inputs.


1998 ◽  
Vol 15 (1) ◽  
pp. 177-196 ◽  
Author(s):  
J. MCLEAN ◽  
L.A. PALMER

We have utilized an associative conditioning paradigm to induce changes in the receptive field (RF) properties of neurons in the adult cat striate cortex. During conditioning, the presentation of particular visual stimuli were repeatedly paired with the iontophoretic application of either GABA or glutamate to control postsynaptic firing rates. Similar paradigms have been used in kitten visual cortex to alter RF properties (Fregnac et al., 1988, 1992; Greuel et al., 1988; Shulz & Fregnac, 1992). Roughly half of the cells that were subjected to conditioning with stimuli differing in orientation were found to have orientation tuning curves that were significantly altered. In general, the modification in orientation tuning was not accompanied by a shift in preferred orientation, but rather, responsiveness to stimuli at or near the positively reinforced orientation was increased relative to controls, and responsiveness to stimuli at or near the negatively reinforced orientation was decreased relative to controls. A similar proportion of cells that were subjected to conditioning with stimuli differing in spatial phase were found to have spatial-phase tuning curves that were significantly modified. Conditioning stimuli typically differed by 90 deg in spatial phase, but modifications in spatial-phase angle were generally 30–40 deg. An interesting phenomenon we encountered was that during conditioning, cells often developed a modulated response to counterphased grating stimuli presented at the null spatial phase. We present an example of a simple cell for which the shift in preferred spatial phase measured with counterphased grating stimuli was comparable to the shift in spatial phase computed from a one-dimensional Gabor fit of the space-time RF profile. One of ten cells tested had a significant change in direction selectivity following associative conditioning. The specific and predictable modifications of RF properties induced by our associative conditioning procedure demonstrate the ability of mature visual cortical neurons to alter their integrative properties. Our results lend further support to models of synaptic plasticity where temporal correlations between presynaptic and postsynaptic activity levels control the efficiency of transmission at existing synapses, and to the idea that the mature visual cortex is, in some sense, dynamically organized.


1986 ◽  
Vol 55 (6) ◽  
pp. 1340-1351 ◽  
Author(s):  
W. T. Newsome ◽  
A. Mikami ◽  
R. H. Wurtz

We have conducted physiological and psychophysical experiments to identify possible neural substrates of the perception of apparent motion. We used identical sequences of flashed stimuli in both sets of experiments to better compare the responses of cortical neurons and psychophysical observers. Physiological data were obtained from two cortical visual areas, striate cortex (V1) and the middle temporal area (MT). In the previous paper we presented evidence that neuronal thresholds for direction selectivity in extrastriate area MT were similar to psychophysical thresholds for motion perception at the largest effective interflash interval, and thus speed, for a given eccentricity. We now examine physiological and psychophysical thresholds for a broad range of speeds to determine whether such a correspondence exists for speeds below the upper threshold considered in the previous paper. Stimuli were presented in stroboscopic motion of constant apparent speed while the spatial and temporal interflash intervals were systematically varied. For each neuron we measured the largest spatial interval that elicited directionally selective responses at each of several apparent speeds. We calculated the composite performance of neurons in both MT and V1 by averaging the spatial interval necessary for direction selectivity at each apparent speed. We employed the same apparent-motion stimuli for psychophysical experiments with human subjects in which we measured the spatial interval necessary for the perception of motion over a similar range of apparent speeds. We obtained a composite profile of psychophysical performance by averaging thresholds across subjects at each apparent speed. For high apparent speeds, physiological data from MT, but not V1, corresponded closely to the psychophysical data as suggested in the preceding paper. For low apparent speeds, however, physiological data from MT and V1 were similar to each other and to the psychophysical data. It would appear, therefore, that neurons in either V1 or MT could mediate the perceptual effect at low speeds, whereas MT is a stronger candidate for this role at high speeds. We suggest that the neuronal substrate for apparent motion may be distributed over multiple cortical areas, depending upon the speed and spatial interval of the stimulus.


2006 ◽  
Vol 95 (4) ◽  
pp. 2705-2712 ◽  
Author(s):  
Matthew R. Peterson ◽  
Baowang Li ◽  
Ralph D. Freeman

Various properties of external scenes are integrated during the transmission of information along central visual pathways. One basic property concerns the sensitivity to direction of a moving stimulus. This direction selectivity (DS) is a fundamental response characteristic of neurons in the visual cortex. We have conducted a neurophysiological study of cells in the visual cortex to determine how DS is affected by changes in stimulus contrast. Previous work shows that a neuron integration time is increased at low contrasts, causing temporal changes of response properties. This leads to the prediction that DS should change with stimulus contrast. However, the change could be in a counterintuitive direction, i.e., DS could increase with reduced contrast. This possibility is of intrinsic interest but it is also of potential relevance to recent behavioral work in which human subjects exhibit increased DS as contrast is reduced. Our neurophysiological results are consistent with this finding, i.e., the degree of DS of cortical neurons is inversely related to stimulus contrast. Temporal phase differences of inputs to cortical cells may account for this result.


Sign in / Sign up

Export Citation Format

Share Document