Glutamate immunoreactivity in the cat retina: A quantitative study

1996 ◽  
Vol 13 (1) ◽  
pp. 117-133 ◽  
Author(s):  
Ljubomir Jojich ◽  
Roberta G. Pourcho

AbstractImmunocytochemical methods were used to visualize glutamate immunoreactivity in the cat retina and to compare its localization with that of aspartate, GABA, and glycine. The cellular and subcellular distribution of glutamate was analyzed at the light-microscopic level by optical densitometry and at the electron-microscopic level by immunogold quantification. The findings were consistent with the proposed role for glutamate as the neurotransmitter of photoreceptors and bipolar cells as particularly high concentrations of staining were found in synaptic terminals of these cells. Ganglion cells were also consistently stained. Aspartate was totally colocalized with glutamate in neuronal cell bodies but the synaptic levels of aspartate were much lower than for glutamate. In addition to the staining of photoreceptor, bipolar, and ganglion cells, glutamate immunoreactivity was also observed in approximately 60% of the amacrine cells. These cells exhibited colocalization with either GABA or glycine. The elevated levels of Glu in amacrine cells may reflect its role as a transmitter precursor in GABAergic cells and as an energy source for mitochondria in glycinergic cells.

1991 ◽  
Vol 7 (6) ◽  
pp. 611-618 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractImmunocytochemical techniques were used to localize strychnine-sensitive glycine receptors in cat retina. Light microscopy showed staining in processes ramifying throughout the inner plexiform layer and in cell bodies of both amacrine and ganglion cells. At the electron-microscopic level, receptor immunoreactivity was seen to be clustered at sites postsynaptic to amacrine cells. In contrast, bipolar cells were neither presynaptic nor postsynaptic elements at sites of glycine receptor staining. Double-label studies verified the presence of glycine immunoreactivity in amacrine terminals presynaptic to glycine receptors. These findings support a role for glycine as an inhibitory neurotransmitter in amacrine cells.


1999 ◽  
Vol 16 (1) ◽  
pp. 169-177 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

The distribution of AMPA-selective glutamate receptor subunits was studied in the cat retina using antisera against GluR1 and GluR2/3. Both antisera were localized in postsynaptic sites in the outer plexiform layer (OPL) as well as the inner plexiform layer (IPL). Immunoreactivity for GluR1 was seen in a subpopulation of OFF cone bipolar cells and a number of amacrine and ganglion cells. Within the IPL, processes staining for GluR1 received input from OFF and ON cone bipolar cells but not from rod bipolars. Labeling for GluR2/3 was seen in horizontal cells, an occasional cone bipolar cell, and numerous amacrine and ganglion cells. In the IPL, GluR2/3 staining was postsynaptic to cone bipolar cells in both sublaminae. AII amacrine cells which receive rod bipolar input were also labeled for GluR2/3. With both antisera, staining was limited to a single member of the bipolar dyad complex, providing morphological evidence for functional diversity in glutamatergic pathways.


1979 ◽  
Vol 27 (6) ◽  
pp. 1046-1048 ◽  
Author(s):  
G Pelletier

In an attempt to identify the cells and organellel containing ACTH and beta-lipotropin in the rat brain, an immunocytochemical localization of these two peptides was performed at the electron microscopic level. Both ACTH and beta-lipotropin were localized in dense core vesicles of about 60-80 nm in diameter. Using serial sections, it has been possible to demonstrate that these peptides are contained not only in the same neuronal cell bodies, but also in the same dense core vesicles.


1989 ◽  
Vol 2 (5) ◽  
pp. 425-435 ◽  
Author(s):  
Roberta G. Pourcho ◽  
Michael T. Owczarzak

AbstractThe distribution of GABA-like immunoreactivity in the cat retina was studied through the use of preembedding immunocytochemistry for light microscopy and by postembedding immunogold techniques for electron microscopy. Staining was observed in both inner and outer plexiform layers. Approximately 30% of the somata in the amacrine portion of the inner nuclear layer were immunoreactive and included amacrine and interplexiform cells. Horizontal cells and a subpopulation of cone bipolar cells were also stained. In the ganglion cell layer, staining was observed in both small- and medium-sized neurons. GABA-labeled amacrine cells were presynaptic to somata of amacrine cells and to dendrites of amacrine, bipolar, and ganglion cells. Bipolar cells were a major target, receiving more than 60% of all labeled synapses in the inner plexiform layer. Many of these contacts were reciprocal synapses. These findings support a major role for GABA-labeled amacrines in providing feedback inhibition to bipolar cells in the inner retina.


1988 ◽  
Vol 59 (6) ◽  
pp. 1657-1672 ◽  
Author(s):  
F. Muller ◽  
H. Wassle ◽  
T. Voigt

1. In the intact cat eye, the responses of ganglion cells to light stimulation were recorded extracellularly and the actions of iontophoretically applied 2-amino-4-phosphonobutyrate (APB), a potent agonist at ON-bipolars, and of strychnine, a glycine antagonist, were investigated. 2. Under light-adapted conditions, the activity of ON-center ganglion cells is decreased by APB but is increased by strychnine. APB and strychnine act independently of one another. 3. The activity of light-adapted OFF-center ganglion cells is increased by APB and by strychnine. The light response remains clearly modulated. Strychnine blocks the action of simultaneously applied APB. The results are in agreement with the action of a push-pull mechanism, according to which ON-cone-bipolars provide a glycinergic input into OFF-center ganglion cells. 4. Under dark-adapted conditions, APB blocks the light responses of both ON-center and OFF-center ganglion cells. The discharge rate of ON-center ganglion cells is completely suppressed; OFF-center ganglion cells show a high maintained discharge. 5. Strychnine blocks the scotopic light response of OFF-center ganglion cells and blocks the action of simultaneously applied APB. The light response of ON-center ganglion cells is hardly affected by strychnine. 6. The effects of strychnine on OFF-center ganglion cells are in agreement with the hypothesis that the glycinergic AII amacrine cells modulate the activity of the scotopic OFF-channel. 7. Intravitreally applied APB abolished the scotopic b-wave of the electroretinogram at concentrations of 100 microM. 8. Our data suggest that as in rabbit (10) the rod bipolars in cat retina are depolarizing (ON) bipolar cells.


2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


1981 ◽  
Vol 21 (7) ◽  
pp. 1081-1114 ◽  
Author(s):  
Helga Kolb ◽  
Ralph Nelson ◽  
Andrew Mariani

1979 ◽  
Vol 74 (6) ◽  
pp. 671-689 ◽  
Author(s):  
J D Victor ◽  
R M Shapley

Retinal ganglion cells of the Y type in the cat retina produce two different types of response: linear and nonlinear. The nonlinear responses are generated by a separate and independent nonlinear pathway. The functional connectivity in this pathway is analyzed here by comparing the observed second-order frequency responses of Y cells with predictions of a "sandwich model" in which a static nonlinear stage is sandwiched between two linear filters. The model agrees well with the qualitative and quantitative features of the second-order responses. The prefilter in the model may well be the bipolar cells and the nonlinearity and postfilter in the model are probably associated with amacrine cells.


1999 ◽  
Vol 16 (6) ◽  
pp. 1105-1114 ◽  
Author(s):  
PU QIN ◽  
ROBERTA G. POURCHO

AMPA-selective glutamate receptors play a major role in glutamatergic neurotransmission in the retina and are expressed in a variety of neuronal subpopulations. In the present study, immunocytochemical techniques were used to visualize the distribution of GluR2 and GluR4 subunits in the cat retina. Results were compared with previous localizations of GluR1 and GluR2/3. Staining for GluR2 was limited to a small number of amacrine and ganglion cells whereas GluR4 staining was present in A-type horizontal cells, many amacrine cells including type AII amacrine cells, and the majority of the cells in the ganglion cell layer. Analysis of synaptic relationships in the outer plexiform layer showed the GluR4 subunit to be concentrated at the contacts of cone photoreceptors with A-horizontal cells. In the inner plexiform layer, both GluR2 and GluR4 were postsynaptic to cone bipolar cells at dyad contacts although GluR2 staining was limited to one of the postsynaptic elements whereas GluR4 immunoreactivity was often seen in both postsynaptic elements. Unlike GluR2, GluR4 was also postsynaptic to rod bipolar cells where it could be visualized in processes of AII amacrine cells. The data indicate that GluR3 and GluR4 subunits are colocalized in a number of cell types including A-type horizontal cells, AII amacrine cells, and alpha ganglion cells, but whether they are combined in the same multimeric receptors remains to be determined.


Author(s):  
K. Yoshida ◽  
F. Murata ◽  
S. Ohno ◽  
T. Nagata

IntroductionSeveral methods of mounting emulsion for radioautography at the electron microscopic level have been reported. From the viewpoint of quantitative radioautography, however, there are many critical problems in the procedure to produce radioautographs. For example, it is necessary to apply and develop emulsions in several experimental groups under an identical condition. Moreover, it is necessary to treat a lot of grids at the same time in the dark room for statistical analysis. Since the complicated process and technical difficulties in these procedures are inadequate to conduct a quantitative analysis of many radioautographs at once, many factors may bring about unexpected results. In order to improve these complicated procedures, a simplified dropping method for mass production of radioautographs under an identical condition was previously reported. However, this procedure was not completely satisfactory from the viewpoint of emulsion homogeneity. This paper reports another improved procedure employing wire loops.


Sign in / Sign up

Export Citation Format

Share Document