The effects of allostatic load on neural systems subserving motivation, mood regulation, and social affiliation

2011 ◽  
Vol 23 (4) ◽  
pp. 975-999 ◽  
Author(s):  
Theodore P. Beauchaine ◽  
Emily Neuhaus ◽  
Maureen Zalewski ◽  
Sheila E. Crowell ◽  
Natalia Potapova

AbstractThe term allostasis, which is defined as stability through change, has been invoked repeatedly by developmental psychopathologists to describe long-lasting and in some cases permanent functional alterations in limbic–hypothalamic–pituitary–adrenal axis responding following recurrent and/or prolonged exposure to stress. Increasingly, allostatic load models have also been invoked to describe psychological sequelae of abuse, neglect, and other forms of maltreatment. In contrast, neural adaptations to stress, including those incurred by monoamine systems implicated in (a) mood and emotion regulation, (b) behavioral approach, and (c) social affiliation and attachment, are usually not included in models of allostasis. Rather, structural and functional alterations in these systems, which are exquisitely sensitive to prolonged stress exposure, are usually explained as stress mediators, neural plasticity, and/or programming effects. Considering these mechanisms as distinct from allostasis is somewhat artificial given overlapping functions and intricate coregulation of monoamines and the limbic–hypothalamic–pituitary–adrenal axis. It also fractionates literatures that should be mutually informative. In this article, we describe structural and functional alterations in serotonergic, dopaminergic, and noradrenergic neural systems following both acute and prolonged exposure to stress. Through increases in behavioral impulsivity, trait anxiety, mood and emotion dysregulation, and asociality, alterations in monoamine functioning have profound effects on personality, attachment relationships, and the emergence of psychopathology.

2018 ◽  
Vol 31 (02) ◽  
pp. 509-524 ◽  
Author(s):  
Catherine B. Stroud ◽  
Frances R. Chen ◽  
Leah D. Doane ◽  
Douglas A. Granger

AbstractResearch suggests that early adversity places individuals at risk for psychopathology across the life span. Guided by concepts of allostasis and allostatic load, the present study examined whether early adversity contributes to the development of subsequent internalizing symptoms through its association with traitlike individual differences in hypothalamic–pituitary–adrenal axis regulation. Early adolescent girls (n= 113;Mage = 12.30 years) provided saliva samples at waking, 30 min postwaking, and bedtime over 3 days (later assayed for cortisol). Objective contextual stress interviews with adolescents and their mothers were used to assess the accumulation of nine types of early adversity within the family environment. Greater early adversity predicted subsequent increases in internalizing symptoms through lower levels of latent trait cortisol. Traitlike individual differences in hypothalamic–pituitary–adrenal axis activity may be among the mechanisms through which early adversity confers risk for the development of psychopathology.


2011 ◽  
Vol 23 (4) ◽  
pp. 1017-1037 ◽  
Author(s):  
Paul O. Wilkinson ◽  
Ian M. Goodyer

AbstractChildhood adversity is associated with increased risk for onset of depressive episodes. This review will present evidence that allostatic overload of the hypothalamic–pituitary–adrenal axis (HPAA) partially mediates this association. The HPAA is the physiological system that regulates levels of the stress hormone cortisol. First, data from animals and humans has shown that early environmental adversity is associated with long-term dysregulation of the HPAA. This may occur due to permanent epigenetic modification of the glucocorticoid receptor. Second, data from humans has demonstrated that HPAA dysregulation is associated with increased risk of future depression onset in healthy individuals, and pharmacological correction of HPAA dysregulation reduces depressive symptoms. HPAA dysregulation may result in corticoid-mediated abnormalities in neurogenesis in early life and/or neurotoxicity on neural systems that subserve emotion and cognition.


Sign in / Sign up

Export Citation Format

Share Document