glucocorticoid receptors
Recently Published Documents


TOTAL DOCUMENTS

1558
(FIVE YEARS 150)

H-INDEX

86
(FIVE YEARS 8)

2021 ◽  
Author(s):  
Andres R Henriquez ◽  
Samantha J Snow ◽  
John S House ◽  
Alison A Motsinger-Reif ◽  
Cavin Ward-Caviness ◽  
...  

Background. Stress-related neurobehavioral and metabolic disorders are associated with altered circulating adrenal-derived hormones and hyperglycemia. Temporal assessment of glucose and these hormones is critical for insights on an individuals health. Objectives. Here we use implantable-telemetry in rats to assess real-time changes in circulating glucose during and after exposure to the air pollutant ozone, and link responses to circulating neuroendocrine stress and metabolic hormones. We also proposed to compare rodent glucose and corticosterone (cortisol in humans) responses to humans exposed to ozone. Methods. First, using a cross-over design, we monitored glucose levels during single or repeated ozone exposures (0.0, 0.2, 0.4 and 0.8-ppm) and non-exposure periods in male Wistar-Kyoto-rats implanted with glucose-telemeters. A second cohort of un-implanted rats was exposed to ozone (0.0, 0.4 or 0.8-ppm) for 30-min, 1-hour, 2-hour, or 4-hour with hormones measured immediately after exposure. Then we assessed glucose metabolism in sham and adrenalectomized rats with or without pharmacological interventions of adrenergic and glucocorticoid receptors. Finally, we assessed glucose and cortisol in serum samples form a clinical study involving exposure of human volunteers to air or 0.3 ppm ozone. Results. Ozone (0.8-ppm) caused hyperglycemia and hypothermia beginning 90-min into exposure, with reversal of effects 4-6 hours post-exposure. Glucose monitoring during four daily 4-hour ozone exposures revealed duration of hyperglycemia, adaptation, and diurnal variations. Ozone-induced hyperglycemia was preceded by increased adrenocorticotropic hormone, corticosterone, and epinephrine, but depletion of thyroid-stimulating, prolactin, and luteinizing hormones. Hyperglycemia was inhibited in rats that are adrenalectomized and/or treated with glucocorticoid inhibitor. There was coherence among rats and humans in ozone-induced corticosterone/cortisol increases. Discussion. We demonstrate for the first time the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced metabolic dysfunction as exposure occurs. Real-time glucose monitoring with stress hormones assessment may be useful in identifying interactions among pollutants and stress-related illnesses.


Author(s):  
Seungjae Zhang ◽  
Myunghyun Cheon ◽  
Hoyong Park ◽  
Taejoon Kim ◽  
ChiHye Chung

Author(s):  
Julia R. Austin ◽  
Kailiang Li ◽  
Rocío Rivera Rodríguez ◽  
Daniel D. Lantvit ◽  
Brian T. Murphy ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2303
Author(s):  
Christophe Vanpouille ◽  
Gökçe Günaydın ◽  
Mattias Jangard ◽  
Mario Clerici ◽  
Leonid Margolis ◽  
...  

The association between the use of the injectable contraceptive depot medroxyprogesterone acetate and HIV-1 susceptibility has been addressed mainly in respect to the changes occurring in the female genital mucosa and blood. However, one of the main sites of HIV-1 pathogenesis is lymphoid organs. To investigate the immunoregulatory effect of medroxyprogesterone acetate (MPA) at this site, human tonsillar tissue explants were infected ex vivo with either a CCR5 (BaL) or CXCR4 (LAI) HIV-1 variant and the release of p24gag and cytokines was measured in culture supernatant. The response to MPA was compared with that elicited by treatment with progesterone (P4) and dexamethasone (DEX), which selectively binds the glucocorticoid receptor, in donor-matched explant cultures. MPA treatment reduced the replication of both tested HIV-1 strains as well as the production of the mediators of inflammation IL-1β, IL-17A and CCL5, but not CCL20, in a similar way to DEX, whereas P4 had no effect on HIV-1 replication. The magnitude of both MPA and DEX-mediated responses was proportional to the length of exposure and/or administered dose. Blockage of the progesterone and glucocorticoid receptors with mifepristone abolished all observed changes in HIV-1 and cytokine production, and was associated with increased IL-22 levels in HIV-infected explants. Our data indicate that elevated doses of MPA may affect the immune responses in lymphoid tissue in a glucocorticoid-like fashion with an immediate impact on local HIV-1 replication.


2021 ◽  
Vol 13 ◽  
Author(s):  
Kuldeep Shrivastava ◽  
Tali Rosenberg ◽  
Noam Meiri ◽  
Mouna Maroun

The corticolimbic circuits in general and the medial prefrontal cortex in particular, undergo maturation during juvenility. It is thus expected that environmental challenges in forms of obesogenic diet can exert different effects in juvenile animals compared to adults. Further, the relationship between glucocorticoids and obesity has also been demonstrated in several studies. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-obesity agents. In the present study, we examined the effects of short-term exposure to high-fat diet (HFD) on prefrontal long-term potentiation (LTP) in both juvenile and adult rats, and the role of glucocorticoid receptors (GRs) in modulating these effects. We found HFD impaired prefrontal LTP in both juveniles and adults, but the effects of GR modulation were age- and diet-dependent. Specifically, GR antagonist RU-486 reversed the impairment of LTP in juvenile animals following HFD, and had no effect on control-diet animals. In adult animals, RU-486 has no effect on HFD-impaired LTP, but abolished LTP in control-diet animals. Furthermore, impairments in the prefrontal LTP following HFD are involved with an increase in the mPFC GR levels only in the juveniles. Further, we found that in vivo application of GR agonists into adult mPFC rescued HFD-induced impairment in LTP, suggesting that these receptors might represent strategic therapeutic targets to potentially combat obesity and metabolic related disorder.


2021 ◽  
Vol 22 (18) ◽  
pp. 9767
Author(s):  
Takahiro Nemoto ◽  
Yoshihiko Kakinuma

Low body weight at birth has been shown to be a risk factor for future metabolic disorders, as well as stress response abnormalities and depression. We showed that low-birthweight rats had prolonged high blood corticosterone levels after stress exposure, and that an increase in Gas5 lncRNA, a decoy receptor for glucocorticoid receptors (GRs), reduces glucocorticoid responsiveness. Thus, we concluded that dampened pituitary glucocorticoid responsiveness disturbed the glucocorticoid feedback loop in low-birthweight rats. However, it remains unclear whether such glucocorticoid responsiveness is suppressed solely in the pituitary or systemically. The expression of Gas5 lncRNA increased only in the pituitary, and the intact induction of expression of the GR co-chaperone factor Fkbp5 against dexamethasone was seen in the liver, muscle, and adipose tissue. Intervention with a methyl-modulator diet (folate, VB12, choline, betaine, and zinc) immediately before or one week after delivery reversed the expression level of Gas5 lncRNA in the pituitary of the offspring. Consequently, it partially normalized the blood corticosterone levels after restraint stress exposure. In conclusion, the mode of glucocorticoid response in low-birthweight rats is impaired solely in the pituitary, and intervention with methyl-modulators ameliorates the impairment, but with a narrow therapeutic time window.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Karen R. Mifsud ◽  
Clare L. M. Kennedy ◽  
Silvia Salatino ◽  
Eshita Sharma ◽  
Emily M. Price ◽  
...  

AbstractGlucocorticoid hormones (GCs) — acting through hippocampal mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) — are critical to physiological regulation and behavioural adaptation. We conducted genome-wide MR and GR ChIP-seq and Ribo-Zero RNA-seq studies on rat hippocampus to elucidate MR- and GR-regulated genes under circadian variation or acute stress. In a subset of genes, these physiological conditions resulted in enhanced MR and/or GR binding to DNA sequences and associated transcriptional changes. Binding of MR at a substantial number of sites however remained unchanged. MR and GR binding occur at overlapping as well as distinct loci. Moreover, although the GC response element (GRE) was the predominant motif, the transcription factor recognition site composition within MR and GR binding peaks show marked differences. Pathway analysis uncovered that MR and GR regulate a substantial number of genes involved in synaptic/neuro-plasticity, cell morphology and development, behavior, and neuropsychiatric disorders. We find that MR, not GR, is the predominant receptor binding to >50 ciliary genes; and that MR function is linked to neuronal differentiation and ciliogenesis in human fetal neuronal progenitor cells. These results show that hippocampal MRs and GRs constitutively and dynamically regulate genomic activities underpinning neuronal plasticity and behavioral adaptation to changing environments.


Sign in / Sign up

Export Citation Format

Share Document