scholarly journals Monadic translation of classical sequent calculus

2013 ◽  
Vol 23 (6) ◽  
pp. 1111-1162 ◽  
Author(s):  
JOSÉ ESPÍRITO SANTO ◽  
RALPH MATTHES ◽  
KOJI NAKAZAWA ◽  
LUÍS PINTO

We study monadic translations of the call-by-name (cbn) and call-by-value (cbv) fragments of the classical sequent calculus ${\overline{\lambda}\mu\tilde{\mu}}$ due to Curien and Herbelin, and give modular and syntactic proofs of strong normalisation. The target of the translations is a new meta-language for classical logic, named monadic λμ. This language is a monadic reworking of Parigot's λμ-calculus, where the monadic binding is confined to commands, thus integrating the monad with the classical features. Also, its μ-reduction rule is replaced by a rule expressing the interaction between monadic binding and μ-abstraction.Our monadic translations produce very tight simulations of the respective fragments of ${\overline{\lambda}\mu\tilde{\mu}}$ within monadic λμ, with reduction steps of ${\overline{\lambda}\mu\tilde{\mu}}$ being translated in a 1–1 fashion, except for β steps, which require two steps. The monad of monadic λμ can be instantiated to the continuations monad so as to ensure strict simulation of monadic λμ within simply typed λ-calculus with β- and η-reduction. Through strict simulation, the strong normalisation of simply typed λ-calculus is inherited by monadic λμ, and then by cbn and cbv ${\overline{\lambda}\mu\tilde{\mu}}$, thus reproving strong normalisation in an elementary syntactical way for these fragments of ${\overline{\lambda}\mu\tilde{\mu}}$, and establishing it for our new calculus. These results extend to second-order logic, with polymorphic λ-calculus as the target, giving new strong normalisation results for classical second-order logic in sequent calculus style.CPS translations of cbn and cbv ${\overline{\lambda}\mu\tilde{\mu}}$ with the strict simulation property are obtained by composing our monadic translations with the continuations-monad instantiation. In an appendix to the paper, we investigate several refinements of the continuations-monad instantiation in order to obtain in a modular way improvements of the CPS translations enjoying extra properties like simulation by cbv β-reduction or reduction of administrative redexes at compile time.

Author(s):  
Tim Button ◽  
Sean Walsh

In this chapter, the focus shifts from numbers to sets. Again, no first-order set theory can hope to get anywhere near categoricity, but Zermelo famously proved the quasi-categoricity of second-order set theory. As in the previous chapter, we must ask who is entitled to invoke full second-order logic. That question is as subtle as before, and raises the same problem for moderate modelists. However, the quasi-categorical nature of Zermelo's Theorem gives rise to some specific questions concerning the aims of axiomatic set theories. Given the status of Zermelo's Theorem in the philosophy of set theory, we include a stand-alone proof of this theorem. We also prove a similar quasi-categoricity for Scott-Potter set theory, a theory which axiomatises the idea of an arbitrary stage of the iterative hierarchy.


1984 ◽  
Vol 7 (4) ◽  
pp. 391-428
Author(s):  
Wiktor Dańko

In this paper we propose to transform the Algorithmic Theory of Stacks (cf. Salwicki [30]) into a logic for expressing and proving properties of programs with stacks. We compare this logic to the Weak Second Order Logic (cf. [11, 15]) and prove theorems concerning axiomatizability without quantifiers (an analogon of Łoś-Tarski theorem) and χ 0 - categoricity (an analogon of Ryll-Nardzewski’s theorem).


2017 ◽  
Vol 52 (1) ◽  
pp. 232-245
Author(s):  
Loris D'Antoni ◽  
Margus Veanes

1970 ◽  
Vol 35 (1) ◽  
pp. 97-104
Author(s):  
A. B. Slomson

Two cardinals are said to beindistinguishableif there is no sentence of second order logic which discriminates between them. This notion, which is defined precisely below, is closely related to that ofcharacterizablecardinals, introduced and studied by Garland in [3]. In this paper we give an algebraic criterion for two cardinals to be indistinguishable. As a consequence we obtain a straightforward proof of an interesting theorem about characterizable cardinals due to Zykov [6].


Axiomathes ◽  
2010 ◽  
Vol 20 (2-3) ◽  
pp. 365-383 ◽  
Author(s):  
Otávio Bueno

Sign in / Sign up

Export Citation Format

Share Document