Error analysis of boundary integral methods

Acta Numerica ◽  
1992 ◽  
Vol 1 ◽  
pp. 287-339 ◽  
Author(s):  
Ian H. Sloan

Many of the boundary value problems traditionally cast as partial differential equations can be reformulated as integral equations over the boundary. After an introduction to boundary integral equations, this review describes some of the methods which have been proposed for their approximate solution. It discusses, as simply as possible, some of the techniques used in their error analysis, and points to areas in which the theory is still unsatisfactory.

Author(s):  
C. J. Coleman

AbstractWe show that a combination of Taylor series and boundary integral methods can lead to an effective scheme for solving a class of nonlinear partial differential equations. The method is illustrated through its application to an equation from two dimensional fluid mechanics.


Author(s):  
Aleksandr N. Tynda ◽  
Konstantin A. Timoshenkov

In this paper we propose numerical methods for solving interior and exterior boundary-value problems for the Helmholtz and Laplace equations in complex three-dimensional domains. The method is based on their reduction to boundary integral equations in R2. Using the potentials of the simple and double layers, we obtain boundary integral equations of the Fredholm type with respect to unknown density for Dirichlet and Neumann boundary value problems. As a result of applying integral equations along the boundary of the domain, the dimension of problems is reduced by one. In order to approximate solutions of the obtained weakly singular Fredholm integral equations we suggest general numerical method based on spline approximation of solutions and on the use of adaptive cubatures that take into account the singularities of the kernels. When constructing cubature formulas, essentially non-uniform graded meshes are constructed with grading exponent that depends on the smoothness of the input data. The effectiveness of the method is illustrated with some numerical experiments.


Sign in / Sign up

Export Citation Format

Share Document