An Introduction to Random Topological Graph Theory

1994 ◽  
Vol 3 (4) ◽  
pp. 545-555 ◽  
Author(s):  
Arthur T. White

We introduce five probability models for random topological graph theory. For two of these models (I and II), the sample space consists of all labeled orientable 2-cell imbeddings of a fixed connected graph, and the interest centers upon the genus random variable. Exact results are presented for the expected value of this random variable for small-order complete graphs, for closed-end ladders, and for cobblestone paths. The expected genus of the complete graph is asymptotic to the maximum genus. For Model III, the sample space consists of all labeled 2-cell imbeddings (possibly nonorientable) of a fixed connected graph, and for Model IV the sample space consists of all such imbeddings with a rotation scheme also fixed. The event of interest is that the ambient surface is orientable. In both these models the complete graph is almost never orientably imbedded. The probability distribution in Models I and III is uniform; in Models II and IV it depends on a parameter p and is uniform precisely when p = 1/2. Model V combines the features of Models II and IV.

2020 ◽  
Vol 13 (5) ◽  
pp. 1231-1240
Author(s):  
Büşra Aydın ◽  
Nihat Akgüneş ◽  
İsmail Naci Cangül

Algebraic study of graphs is a relatively recent subject which arose in two main streams: One is named as the spectral graph theory and the second one deals with graphs over several algebraic structures. Topological graph indices are widely-used tools in especially molecular graph theory and mathematical chemistry due to their time and money saving applications. The Wiener index is one of these indices which is equal to the sum of distances between all pairs of vertices in a connected graph. The graph over the nite dot product of monogenic semigroups has recently been dened and in this paper, some results on the Wiener index of the dot product graph over monogenic semigroups are given.


2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Anthony Bonato ◽  
William B. Kinnersley ◽  
Pawel Pralat

Graph Theory International audience We study a two-person game played on graphs based on the widely studied chip-firing game. Players Max and Min alternately place chips on the vertices of a graph. When a vertex accumulates as many chips as its degree, it fires, sending one chip to each neighbour; this may in turn cause other vertices to fire. The game ends when vertices continue firing forever. Min seeks to minimize the number of chips played during the game, while Max seeks to maximize it. When both players play optimally, the length of the game is the toppling number of a graph G, and is denoted by t(G). By considering strategies for both players and investigating the evolution of the game with differential equations, we provide asymptotic bounds on the toppling number of the complete graph. In particular, we prove that for sufficiently large n 0.596400 n2 < t(Kn) < 0.637152 n2. Using a fractional version of the game, we couple the toppling numbers of complete graphs and the binomial random graph G(n,p). It is shown that for pn ≥n² / √ log(n) asymptotically almost surely t(G(n,p))=(1+o(1)) p t(Kn).


2011 ◽  
Vol 393-395 ◽  
pp. 20-23
Author(s):  
Jian Guo Luo ◽  
Mao Yan He

Based on the analysis of current developing state of graph theory, define the description of spacial moving capability of common couples and translation base and rotation base of mechanism, based on the new description method in topological graph theory. DOF(degree of freedom) of hybrid mechanism analysised with example based on the definition of dimensionity of branch spacial moving capability and mechanism spacial moving capability, necessary and sufficient condition of nonsingularity of mechanism presented, as well as the necessary and sufficient condition of singularity of mechanism deduced , in-phase and assimilation condition and in-phase and dissimilarity condition and asynchronism condition of limitation of input base of branch adopted, case number of position singularity and pose singularity and position and pose singularity obtained then, still the way of founding the combination and case number of common serial mechanism and parallel mechanism and hybrid mechanism mentioned.


Sign in / Sign up

Export Citation Format

Share Document