scholarly journals Toppling numbers of complete and random graphs

2014 ◽  
Vol Vol. 16 no. 3 (Graph Theory) ◽  
Author(s):  
Anthony Bonato ◽  
William B. Kinnersley ◽  
Pawel Pralat

Graph Theory International audience We study a two-person game played on graphs based on the widely studied chip-firing game. Players Max and Min alternately place chips on the vertices of a graph. When a vertex accumulates as many chips as its degree, it fires, sending one chip to each neighbour; this may in turn cause other vertices to fire. The game ends when vertices continue firing forever. Min seeks to minimize the number of chips played during the game, while Max seeks to maximize it. When both players play optimally, the length of the game is the toppling number of a graph G, and is denoted by t(G). By considering strategies for both players and investigating the evolution of the game with differential equations, we provide asymptotic bounds on the toppling number of the complete graph. In particular, we prove that for sufficiently large n 0.596400 n2 < t(Kn) < 0.637152 n2. Using a fractional version of the game, we couple the toppling numbers of complete graphs and the binomial random graph G(n,p). It is shown that for pn ≥n² / √ log(n) asymptotically almost surely t(G(n,p))=(1+o(1)) p t(Kn).

2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Peter Mark Kayll ◽  
Dave Perkins

Graph Theory International audience We introduce a variation of chip-firing games on connected graphs. These 'burn-off' games incorporate the loss of energy that may occur in the physical processes that classical chip-firing games have been used to model. For a graph G=(V,E), a configuration of 'chips' on its nodes is a mapping C:V→ℕ. We study the configurations that can arise in the course of iterating a burn-off game. After characterizing the 'relaxed legal' configurations for general graphs, we enumerate the 'legal' ones for complete graphs Kn. The number of relaxed legal configurations on Kn coincides with the number tn+1 of spanning trees of Kn+1. Since our algorithmic, bijective proof of this fact does not invoke Cayley's Formula for tn, our main results yield secondarily a new proof of this formula.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Laura Escobar

International audience Given a fan $\Delta$ and a cone $\sigma \in \Delta$ let $star^1(\sigma )$ be the set of cones that contain $\sigma$ and are one dimension bigger than $\sigma$ . In this paper we study two cones of piecewise linear functions defined on $\delta$ : the cone of functions which are convex on $star^1(σ\sigma)$ for all cones, and the cone of functions which are convex on $star^1(σ\sigma)$ for all cones of codimension 1. We give nice combinatorial descriptions for these two cones given two different fan structures on the tropical linear space of complete graphs. For the complete graph $K_5$, we prove that with the finer fan subdivision the two cones are not equal, but with the coarser subdivision they are the same. This gives a negative answer to a question of Gibney-Maclagan that for the finer subdivision the two cones are the same. Soit $\Delta$ un fan, pour $\sigma \in \Delta$ nous définissons $star^1(\sigma )$ comme l'ensemble de cônes qui contiennent $\sigma$ dont la dimension est un de plus que la dimension de $\sigma$ . Nous étudions deux cônes d'applications linéaires par morceaux définis sur $\Delta$ : le cône de fonctions convexes sur$star^1(\sigma )$, où $\sigma \in \Delta$ est un cône quelconque, et le cône de fonctions convexes sur $star^1(σ\sigma)$ où σ est un cône de codimension 1. étant donnés deux structures sur l'espace tropical linéaire de graphes complets, nous donnons de beaux descriptions combinatoires des cônes décrits en haut. Pour le graphe complet $K_5$, on démontre que avec la subdivision en fans plus fine, les deux cônes sont différentes, mais avec la subdivision plus gros ils sont cônes sont les mêmes. Ce résultant réponde négativement une question de Gibney-Maclagan.


2013 ◽  
Vol Vol. 15 no. 1 (Graph Theory) ◽  
Author(s):  
Mariusz Grech ◽  
Andrzej Kisielewicz

Graph Theory International audience In this paper we describe all edge-colored graphs that are fully symmetric with respect to colors and transitive on every set of edges of the same color. They correspond to fully symmetric homogeneous factorizations of complete graphs. Our description completes the work done in our previous paper, where we have shown, in particular, that there are no such graphs with more than 5 colors. Using some recent results, with a help of computer, we settle all the cases that was left open in the previous paper.


1994 ◽  
Vol 3 (4) ◽  
pp. 545-555 ◽  
Author(s):  
Arthur T. White

We introduce five probability models for random topological graph theory. For two of these models (I and II), the sample space consists of all labeled orientable 2-cell imbeddings of a fixed connected graph, and the interest centers upon the genus random variable. Exact results are presented for the expected value of this random variable for small-order complete graphs, for closed-end ladders, and for cobblestone paths. The expected genus of the complete graph is asymptotic to the maximum genus. For Model III, the sample space consists of all labeled 2-cell imbeddings (possibly nonorientable) of a fixed connected graph, and for Model IV the sample space consists of all such imbeddings with a rotation scheme also fixed. The event of interest is that the ambient surface is orientable. In both these models the complete graph is almost never orientably imbedded. The probability distribution in Models I and III is uniform; in Models II and IV it depends on a parameter p and is uniform precisely when p = 1/2. Model V combines the features of Models II and IV.


2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Gregory Constantine

International audience Can a complete graph on an even number n (>4) of vertices be properly edge-colored with n-1 colors in such a way that the edges can be partitioned into edge disjoint colorful isomorphic spanning trees? A spanning treee is colorful if all n-1 colors occur among its edges. It is proved that this is possible to accomplish whenever n is a power of two, or five times a power of two.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Adel Alahmadi ◽  
Robert E. L. Aldred ◽  
Ahmad Alkenani ◽  
Rola Hijazi ◽  
P. Solé ◽  
...  

Graph Theory International audience Ruskey and Savage conjectured that in the d-dimensional hypercube, every matching M can be extended to a Hamiltonian cycle. Fink verified this for every perfect matching M, remarkably even if M contains external edges. We prove that this property also holds for sparse spanning regular subgraphs of the cubes: for every d ≥7 and every k, where 7 ≤k ≤d, the d-dimensional hypercube contains a k-regular spanning subgraph such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle. We do not know if this result can be extended to k=4,5,6. It cannot be extended to k=3. Indeed, there are only three 3-regular graphs such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle, namely the complete graph on 4 vertices, the complete bipartite 3-regular graph on 6 vertices and the 3-cube on 8 vertices. Also, we do not know if there are graphs of girth at least 5 with this matching-extendability property.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Martin Marciniszyn ◽  
Dieter Mitsche ◽  
Miloš Stojaković

International audience We introduce and study balanced online graph avoidance games on the random graph process. The game is played by a player we call Painter. Edges of the complete graph with $n$ vertices are revealed two at a time in a random order. In each move, Painter immediately and irrevocably decides on a balanced coloring of the new edge pair: either the first edge is colored red and the second one blue or vice versa. His goal is to avoid a monochromatic copy of a given fixed graph $H$ in both colors for as long as possible. The game ends as soon as the first monochromatic copy of $H$ has appeared. We show that the duration of the game is determined by a threshold function $m_H = m_H(n)$. More precisely, Painter will asymptotically almost surely (a.a.s.) lose the game after $m = \omega (m_H)$ edge pairs in the process. On the other hand, there is an essentially optimal strategy, that is, if the game lasts for $m = o(m_H)$ moves, then Painter will a.a.s. successfully avoid monochromatic copies of H using this strategy. Our attempt is to determine the threshold function for certain graph-theoretic structures, e.g., cycles.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Stefanie Gerke ◽  
Martin Marciniszyn ◽  
Angelika Steger

International audience We prove the existence of many complete graphs in almost all sufficiently dense partitions obtained by an application of Szemerédi's Regularity Lemma. More precisely, we consider the number of complete graphs $K_{\ell}$ on $\ell$ vertices in $\ell$-partite graphs where each partition class consists of $n$ vertices and there is an $\varepsilon$-regular graph on $m$ edges between any two partition classes. We show that for all $\beta > $0, at most a $\beta^m$-fraction of graphs in this family contain less than the expected number of copies of $K_{\ell}$ provided $\varepsilon$ is sufficiently small and $m \geq Cn^{2-1/(\ell-1)}$ for a constant $C > 0$ and $n$ sufficiently large. This result is a counting version of a restricted version of a conjecture by Kohayakawa, Łuczak and Rödl and has several implications for random graphs.


2015 ◽  
Vol Vol. 17 no. 1 (Graph Theory) ◽  
Author(s):  
Robert Engström ◽  
Tommy Färnqvist ◽  
Peter Jonsson ◽  
Johan Thapper

Graph Theory International audience We introduce a binary parameter on optimisation problems called separation. The parameter is used to relate the approximation ratios of different optimisation problems; in other words, we can convert approximability (and non-approximability) result for one problem into (non)-approximability results for other problems. Our main application is the problem (weighted) maximum H-colourable subgraph (Max H-Col), which is a restriction of the general maximum constraint satisfaction problem (Max CSP) to a single, binary, and symmetric relation. Using known approximation ratios for Max k-cut, we obtain general asymptotic approximability results for Max H-Col for an arbitrary graph H. For several classes of graphs, we provide near-optimal results under the unique games conjecture. We also investigate separation as a graph parameter. In this vein, we study its properties on circular complete graphs. Furthermore, we establish a close connection to work by Šámal on cubical colourings of graphs. This connection shows that our parameter is closely related to a special type of chromatic number. We believe that this insight may turn out to be crucial for understanding the behaviour of the parameter, and in the longer term, for understanding the approximability of optimisation problems such as Max H-Col.


10.37236/6089 ◽  
2017 ◽  
Vol 24 (1) ◽  
Author(s):  
Deepak Bal ◽  
Louis DeBiasio

Erdős, Gyárfás, and Pyber (1991) conjectured that every $r$-colored complete graph can be partitioned into at most $r-1$ monochromatic components; this is a strengthening of a conjecture of Lovász (1975) and Ryser (1970) in which the components are only required to form a cover. An important partial result of Haxell and Kohayakawa (1995) shows that a partition into $r$ monochromatic components is possible for sufficiently large $r$-colored complete graphs.We start by extending Haxell and Kohayakawa's result to graphs with large minimum degree, then we provide some partial analogs of their result for random graphs. In particular, we show that if $p\ge \left(\frac{27\log n}{n}\right)^{1/3}$, then a.a.s. in every $2$-coloring of $G(n,p)$ there exists a partition into two monochromatic components, and for $r\geq 2$ if $p\ll \left(\frac{r\log n}{n}\right)^{1/r}$, then a.a.s. there exists an $r$-coloring of $G(n,p)$ such that there does not exist a cover with a bounded number of components. Finally, we consider a random graph version of a classic result of Gyárfás (1977) about large monochromatic components in $r$-colored complete graphs. We show that if $p=\frac{\omega(1)}{n}$, then a.a.s. in every $r$-coloring of $G(n,p)$ there exists a monochromatic component of order at least $(1-o(1))\frac{n}{r-1}$.


Sign in / Sign up

Export Citation Format

Share Document