Algebraic Properties of Modulo q Complete ℓ-Wide Families

2009 ◽  
Vol 18 (3) ◽  
pp. 309-333 ◽  
Author(s):  
BÁLINT FELSZEGHY ◽  
GÁBOR HEGEDŰS ◽  
LAJOS RÓNYAI

Let q be a power of a prime p, and let n, d, ℓ be integers such that 1 ≤ n, 1 ≤ ℓ < q. Consider the modulo q complete ℓ-wide family: We describe a Gröbner basis of the vanishing ideal I() of the set of characteristic vectors of over fields of characteristic p. It turns out that this set of polynomials is a Gröbner basis for all term orderings ≺, for which the order of the variables is xn ≺ xn−1 ≺ ⋅⋅⋅ ≺ x1.We compute the Hilbert function of I(), which yields formulae for the modulo p rank of certain inclusion matrices related to .We apply our results to problems from extremal set theory. We prove a sharp upper bound of the cardinality of a modulo q ℓ-wide family, which shatters only small sets. This is closely related to a conjecture of Frankl [13] on certain ℓ-antichains. The formula of the Hilbert function also allows us to obtain an upper bound on the size of a set system with certain restricted intersections, generalizing a bound proposed by Babai and Frankl [6].The paper generalizes and extends the results of [15], [16] and [17].

2019 ◽  
Vol 27 (2) ◽  
pp. 233-258
Author(s):  
M. Eduardo Uribe-Paczka ◽  
Eliseo Sarmiento ◽  
Carlos Rentería Márquez

AbstractLet K be a finite field. Let X* be a subset of the a ne space Kn, which is parameterized by odd cycles. In this paper we give an explicit Gröbner basis for the vanishing ideal, I(X*), of X*. We give an explicit formula for the regularity of I(X*) and finally if X* is parameterized by an odd cycle of length k, we show that the Hilbert function of the vanishing ideal of X* can be written as linear combination of Hilbert functions of degenerate torus.


2015 ◽  
Vol 23 (2) ◽  
pp. 223-240
Author(s):  
Manuel González Sarabia ◽  
Carlos Rentería Márquez ◽  
Eliseo Sarmiento Rosales

Abstract In this paper we estimate the main parameters of some evaluation codes which are known as projective parameterized codes. We find the length of these codes and we give a formula for the dimension in terms of the Hilbert function associated to two ideals, one of them being the vanishing ideal of the projective torus. Also we find an upper bound for the minimum distance and, in some cases, we give some lower bounds for the regularity index and the minimum distance. These lower bounds work in several cases, particularly for any projective parameterized code associated to the incidence matrix of uniform clutters and then they work in the case of graphs.


2019 ◽  
Vol 13 (3-4) ◽  
pp. 229-237
Author(s):  
Stavros Kousidis ◽  
Andreas Wiemers

Abstract We improve on the first fall degree bound of polynomial systems that arise from a Weil descent along Semaev’s summation polynomials relevant to the solution of the Elliptic Curve Discrete Logarithm Problem via Gröbner basis algorithms.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2012 ◽  
Vol 47 (8) ◽  
pp. 926-941 ◽  
Author(s):  
Martin R. Albrecht ◽  
Carlos Cid ◽  
Jean-Charles Faugère ◽  
Ludovic Perret
Keyword(s):  

1972 ◽  
Vol 37 (4) ◽  
pp. 711-715 ◽  
Author(s):  
Krister Segerberg

Let ⊥, →, and □ be primitive, and let us have a countable supply of propositional letters. By a (modal) logic we understand a proper subset of the set of all formulas containing every tautology and being closed under modus ponens and substitution. A logic is regular if it contains every instance of □A ∧ □B ↔ □(A ∧ B) and is closed under the ruleA regular logic is normal if it contains □⊤. The smallest regular logic we denote by C (the same as Lemmon's C2), the smallest normal one by K. If L and L' are logics and L ⊆ L′, then L is a sublogic of L', and L' is an extension of L; properly so if L ≠ L'. A logic is quasi-regular (respectively, quasi-normal) if it is an extension of C (respectively, K).A logic is Post complete if it has no proper extension. The Post number, denoted by p(L), is the number of Post complete extensions of L. Thanks to Lindenbaum, we know thatThere is an obvious upper bound, too:Furthermore,.


Sign in / Sign up

Export Citation Format

Share Document