extremal set
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Arturo Tozzi

When an edge is removed, a cycle graph Cn becomes a n-1 tree graph. This observation from extremal set theory leads us to the realm of set theory, in which a topological manifold of genus-1 turns out to be of genus-0. Starting from these premises, we prove a theorem suggesting that a manifold with disjoint points must be of genus-0, while a manifold of genus-1 cannot encompass disjoint points.


10.37236/9627 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Jason O'Neill ◽  
Jacques Verstraete

The Bollobás set pairs inequality is a fundamental result in extremal set theory with many applications. In this paper, for $n \geqslant k \geqslant t \geqslant 2$, we consider a collection of $k$ families $\mathcal{A}_i: 1 \leq i \leqslant k$ where $\mathcal{A}_i = \{ A_{i,j} \subset [n] : j \in [n] \}$ so that $A_{1, i_1} \cap \cdots \cap A_{k,i_k} \neq \varnothing$ if and only if there are at least $t$ distinct indices $i_1,i_2,\dots,i_k$. Via a natural connection to a hypergraph covering problem, we give bounds on the maximum size $\beta_{k,t}(n)$ of the families with ground set $[n]$.


2021 ◽  
Vol vol. 23 no. 1 (Combinatorics) ◽  
Author(s):  
Travis Dillon ◽  
Attila Sali

The forbidden number $\mathrm{forb}(m,F)$, which denotes the maximum number of unique columns in an $m$-rowed $(0,1)$-matrix with no submatrix that is a row and column permutation of $F$, has been widely studied in extremal set theory. Recently, this function was extended to $r$-matrices, whose entries lie in $\{0,1,\dots,r-1\}$. The combinatorics of the generalized forbidden number is less well-studied. In this paper, we provide exact bounds for many $(0,1)$-matrices $F$, including all $2$-rowed matrices when $r > 3$. We also prove a stability result for the $2\times 2$ identity matrix. Along the way, we expose some interesting qualitative differences between the cases $r=2$, $r = 3$, and $r > 3$. Comment: 12 pages; v3: formatted for DMTCS; v2: Corollary 3.2 added, typos fixed, some proofs clarified


Author(s):  
Sean Eberhard ◽  
Jeff Kahn ◽  
Bhargav Narayanan ◽  
Sophie Spirkl

Abstract A family of vectors in [k] n is said to be intersecting if any two of its elements agree on at least one coordinate. We prove, for fixed k ≥ 3, that the size of any intersecting subfamily of [k] n invariant under a transitive group of symmetries is o(k n ), which is in stark contrast to the case of the Boolean hypercube (where k = 2). Our main contribution addresses limitations of existing technology: while there are now methods, first appearing in work of Ellis and the third author, for using spectral machinery to tackle problems in extremal set theory involving symmetry, this machinery relies crucially on the interplay between up-sets, biased product measures, and threshold behaviour in the Boolean hypercube, features that are notably absent in the problem considered here. To circumvent these barriers, introducing ideas that seem of independent interest, we develop a variant of the sharp threshold machinery that applies at the level of products of posets.


2020 ◽  
Vol 276 ◽  
pp. 92-101
Author(s):  
Christopher Kusch ◽  
Tamás Mészáros

10.37236/8288 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Stijn Cambie ◽  
António Girão ◽  
Ross J. Kang

Fix positive integers $k$ and $d$. We show that, as $n\to\infty$, any set system $\mathcal{A} \subset 2^{[n]}$ for which the VC dimension of $\{ \triangle_{i=1}^k S_i \mid S_i \in \mathcal{A}\}$ is at most $d$ has size at most $(2^{d\bmod{k}}+o(1))\binom{n}{\lfloor d/k\rfloor}$. Here $\triangle$ denotes the symmetric difference operator. This is a $k$-fold generalisation of a result of Dvir and Moran, and it settles one of their questions.  A key insight is that, by a compression method, the problem is equivalent to an extremal set theoretic problem on $k$-wise intersection or union that was originally due to Erdős and Frankl. We also give an example of a family $\mathcal{A} \subset 2^{[n]}$ such that the VC dimension of $\mathcal{A}\cap \mathcal{A}$ and of $\mathcal{A}\cup \mathcal{A}$ are both at most $d$, while $\lvert \mathcal{A} \rvert = \Omega(n^d)$. This provides a negative answer to another question of Dvir and Moran.


2017 ◽  
Vol 24 (2) ◽  
pp. 211-215 ◽  
Author(s):  
R. Ramu Naidu ◽  
Chandra R. Murthy

Sign in / Sign up

Export Citation Format

Share Document