odd cycle
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 32)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 26 (1) ◽  
pp. 1-24
Author(s):  
Timothy D. Goodrich ◽  
Eric Horton ◽  
Blair D. Sullivan

We experimentally evaluate the practical state-of-the-art in graph bipartization (Odd Cycle Transversal (OCT)), motivated by the need for good algorithms for embedding problems into near-term quantum computing hardware. We assemble a preprocessing suite of fast input reduction routines from the OCT and Vertex Cover (VC) literature and compare algorithm implementations using Quadratic Unconstrained Binary Optimization problems from the quantum literature. We also generate a corpus of frustrated cluster loop graphs, which have previously been used to benchmark quantum annealing hardware. The diversity of these graphs leads to harder OCT instances than in existing benchmarks. In addition to combinatorial branching algorithms for solving OCT directly, we study various reformulations into other NP-hard problems such as VC and Integer Linear Programming (ILP), enabling the use of solvers such as CPLEX. We find that for heuristic solutions with time constraints under a second, iterative compression routines jump-started with a heuristic solution perform best, after which point using a highly tuned solver like CPLEX is worthwhile. Results on exact solvers are split between using ILP formulations on CPLEX and solving VC formulations with a branch-and-reduce solver. We extend our results with a large corpus of synthetic graphs, establishing robustness and potential to generalize to other domain data. In total, over 8,000 graph instances are evaluated, compared to the previous canonical corpus of 100 graphs. Finally, we provide all code and data in an open source suite, including a Python API for accessing reduction routines and branching algorithms, along with scripts for fully replicating our results.


Author(s):  
Gábor Damásdi

AbstractAn odd wheel graph is a graph formed by connecting a new vertex to all vertices of an odd cycle. We answer a question of Rosenfeld and Le by showing that odd wheels cannot be drawn in the plane so that the lengths of the edges are odd integers.


Author(s):  
Ringo Baumann ◽  
Markus Ulbricht

Abstract argumentation as defined by Dung in his seminal 1995 paper is by now a major research area in knowledge representation and reasoning. Dynamics of abstract argumentation frameworks (AFs) as well as syntactical consequences of semantical facts of them are the central issues of this paper. The first main part is engaged with the systematical study of the influence of attackers and supporters regarding the acceptability status of whole sets and/or single arguments. In particular, we investigate the impact of addition or removal of arguments, a line of research that has been around for more than a decade. Apart from entirely new results, we revisit, generalize and sum up similar results from the literature. To gain a comprehensive formal and intuitive understanding of the behavior of AFs we put special effort in comparing different kind of semantics. We concentrate on classical admissibility-based semantics and also give pointers to semantics based on naivity and weak admissibility, a recently introduced mediating approach. In the second main part we show how to infer syntactical information from semantical one. For instance, it is well-known that if a finite AF possesses no stable extension, then it has to contain an odd-cycle. In this paper, we even present a characterization of this issue. Moreover, we show that the change of the number of extensions if adding or removing an argument allows to conclude the existence of certain even or odd cycles in the considered AF without having further information.


2021 ◽  
Author(s):  
Bill Kay ◽  
Catherine Schuman ◽  
Jade O'Connor ◽  
Prasanna Date ◽  
Thomas Potok

Author(s):  
Agnes D. Garciano ◽  
Maria Czarina T. Lagura ◽  
Reginaldo M. Marcelo

For a simple connected graph [Formula: see text] let [Formula: see text] be a coloring of [Formula: see text] where two adjacent vertices may be assigned the same color. Let [Formula: see text] be the sum of colors of neighbors of any vertex [Formula: see text] The coloring [Formula: see text] is a sigma coloring of [Formula: see text] if for any two adjacent vertices [Formula: see text] [Formula: see text] The least number of colors required in a sigma coloring of [Formula: see text] is the sigma chromatic number of [Formula: see text] and is denoted by [Formula: see text] A sigma coloring of a graph is a neighbor-distinguishing type of coloring and it is known that the sigma chromatic number of a graph is bounded above by its chromatic number. It is also known that for a path [Formula: see text] and a cycle [Formula: see text] where [Formula: see text] [Formula: see text] and [Formula: see text] if [Formula: see text] is even. Let [Formula: see text] the join of the graphs [Formula: see text], where [Formula: see text] or [Formula: see text] [Formula: see text] and [Formula: see text] is not an odd cycle for any [Formula: see text]. It has been shown that if [Formula: see text] for [Formula: see text] and [Formula: see text] then [Formula: see text]. In this study, we give necessary and sufficient conditions under which [Formula: see text] where [Formula: see text] is the join of copies of [Formula: see text] and/or [Formula: see text] for the same value of [Formula: see text]. Let [Formula: see text] and [Formula: see text] be positive integers with [Formula: see text] and [Formula: see text] In this paper, we show that [Formula: see text] if and only if [Formula: see text] or [Formula: see text] is odd, [Formula: see text] is even and [Formula: see text]; and [Formula: see text] if and only if [Formula: see text] is even and [Formula: see text] We also obtain necessary and sufficient conditions on [Formula: see text] and [Formula: see text], so that [Formula: see text] for [Formula: see text] where [Formula: see text] or [Formula: see text] other than the cases [Formula: see text] and [Formula: see text]


Author(s):  
Mousumi Mandal ◽  
Dipak Kumar Pradhan

Let [Formula: see text] be a weighted oriented graph with the underlying graph [Formula: see text] when vertices with non-trivial weights are sinks and [Formula: see text] be the edge ideals corresponding to [Formula: see text] and [Formula: see text] respectively. We give an explicit description of the symbolic powers of [Formula: see text] using the concept of strong vertex covers. We show that the ordinary and symbolic powers of [Formula: see text] and [Formula: see text] behave in a similar way. We provide a description for symbolic powers and Waldschmidt constant of [Formula: see text] for certain classes of weighted oriented graphs. When [Formula: see text] is a weighted oriented odd cycle, we compute [Formula: see text] and prove [Formula: see text] and show that equality holds when there is only one vertex with non-trivial weight.


2021 ◽  
Author(s):  
Sandra Chapman ◽  
Scott McIntosh ◽  
Robert Leamon ◽  
Nicholas Watkins

<p>We construct a new solar cycle phase clock which maps each of the last 18 solar cycles onto a single normalized epoch for the approximately 22 year Hale (magnetic polarity) cycle, using the Hilbert transform of daily sunspot numbers (SSN) since 1818. We use the clock to study solar and geomagnetic climatology as seen in datasets available over multiple solar cycles. The occurrence of solar maxima on the clock shows almost no Hale cycle dependence, confirming that the clock is synchronized with polarity reversals.  The odd cycle minima lead the even cycle minima by ~ 1.1 normalized years, whereas the odd cycle terminators (when sunspot bands from opposite hemispheres have moved to the equator and coincide, thus terminating the cycle, McIntosh(2019)) lag the even cycle terminators  by ~ 2.3 normalized years.  The average interval between each minimum and terminator  is thus relatively extended for odd cycles and shortened for even ones. We re-engineer the R27 index that was orignally proposed by Sargent(1985) to parameterize 27 day recurrences in the aa index. We perform an epoch analysis of autocovariance in the aa index using the Hale cycle clock to obtain a high time resolution parameter for 27 day recurrence, <acv(27)>. This reveals that the transition to recurrence, that is, to an ordered solar wind dominated by high speed streams, is fast, occurring within 2-3 solar rotations or less. It resolves an extended late declining phase which is approximately twice as long on even Schwabe cycles as odd ones. We find that Galactic Cosmic Ray flux rises in step with <acv(27)> but then stays high. Our analysis also identifies a slow timescale trend in SSN that simply tracks the Gleissberg cycle. We find that this trend is in phase with the slow timescale trend in the modulus of sunspot latitudes, and in antiphase with that of the R27 index.</p>


Author(s):  
Michael Jünger ◽  
Sven Mallach

The exact solution of the NP-hard (nondeterministic polynomial-time hard) maximum cut problem is important in many applications across, for example, physics, chemistry, neuroscience, and circuit layout—which is also due to its equivalence to the unconstrained binary quadratic optimization problem. Leading solution methods are based on linear or semidefinite programming and require the separation of the so-called odd-cycle inequalities. In their groundbreaking research, F. Barahona and A. R. Mahjoub have given an informal description of a polynomial-time algorithm for this problem. As pointed out recently, however, additional effort is necessary to guarantee that the inequalities obtained correspond to facets of the cut polytope. In this paper, we shed more light on a so enhanced separation procedure and investigate experimentally how it performs in comparison with an ideal setting where one could even employ the sparsest, most violated, or geometrically most promising facet-defining odd-cycle inequalities. Summary of Contribution: This paper aims at a better capability to solve binary quadratic optimization or maximum cut problems and their various applications using integer programming techniques. To this end, the paper describes enhancements to a well-known algorithm for the central separation problem arising in this context; it is demonstrated experimentally that these enhancements are worthwhile from a computational point of view. The linear relaxations of the aforementioned problems are typically solved using fewer iterations and cutting planes than with a nonenhanced approach. It is also shown that the enhanced procedure is only slightly inferior to an ideal, enumerative, and, in practice, intractable global cutting-plane selection.


2021 ◽  
Vol 35 (4) ◽  
pp. 2387-2429
Author(s):  
Bart M. P. Jansen ◽  
Marcin L. Pilipczuk ◽  
Erik Jan van Leeuwen

2021 ◽  
pp. 130-142
Author(s):  
Avinandan Das ◽  
Lawqueen Kanesh ◽  
Jayakrishnan Madathil ◽  
Saket Saurabh
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document