scholarly journals Estimating Insecticide Application Frequencies: A Comparison of Geometric and Other Count Data Models

1997 ◽  
Vol 29 (2) ◽  
pp. 225-242 ◽  
Author(s):  
Bryan J. Hubbell

AbstractThe number of insecticide applications made by an apple grower to control an insect infestation is modeled as a geometric random variable. Insecticide efficacy, rate per application, month of treatment, and method of application all have significant impacts on the expected number of applications. The number of applications to control a given insect population is dependent on the probability of achieving successful control with a given application. Results suggest that northeastern growers have the highest and mid-Atlantic growers the lowest probability of controlling an infestation with a given application. Results also indicate that scales require the least and moths the most number of applications. Growers are not responsive to per unit insecticide prices, but respond negatively to insecticide toxicity, supporting findings from previous pesticide demand analyses.

Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 282
Author(s):  
Mabel Morales-Otero ◽  
Vicente Núñez-Antón

In this paper, we review overdispersed Bayesian generalized spatial conditional count data models. Their usefulness is illustrated with their application to infant mortality rates from Colombian regions and by comparing them with the widely used Besag–York–Mollié (BYM) models. These overdispersed models assume that excess of dispersion in the data may be partially caused from the possible spatial dependence existing among the different spatial units. Thus, specific regression structures are then proposed both for the conditional mean and for the dispersion parameter in the models, including covariates, as well as an assumed spatial neighborhood structure. We focus on the case of response variables following a Poisson distribution, specifically concentrating on the spatial generalized conditional normal overdispersion Poisson model. Models were fitted by making use of the Markov Chain Monte Carlo (MCMC) and Integrated Nested Laplace Approximation (INLA) algorithms in the specific context of Bayesian estimation methods.


2021 ◽  
pp. 263208432199622
Author(s):  
Tim Mathes ◽  
Oliver Kuss

Background Meta-analysis of systematically reviewed studies on interventions is the cornerstone of evidence based medicine. In the following, we will introduce the common-beta beta-binomial (BB) model for meta-analysis with binary outcomes and elucidate its equivalence to panel count data models. Methods We present a variation of the standard “common-rho” BB (BBST model) for meta-analysis, namely a “common-beta” BB model. This model has an interesting connection to fixed-effect negative binomial regression models (FE-NegBin) for panel count data. Using this equivalence, it is possible to estimate an extension of the FE-NegBin with an additional multiplicative overdispersion term (RE-NegBin), while preserving a closed form likelihood. An advantage due to the connection to econometric models is, that the models can be easily implemented because “standard” statistical software for panel count data can be used. We illustrate the methods with two real-world example datasets. Furthermore, we show the results of a small-scale simulation study that compares the new models to the BBST. The input parameters of the simulation were informed by actually performed meta-analysis. Results In both example data sets, the NegBin, in particular the RE-NegBin showed a smaller effect and had narrower 95%-confidence intervals. In our simulation study, median bias was negligible for all methods, but the upper quartile for median bias suggested that BBST is most affected by positive bias. Regarding coverage probability, BBST and the RE-NegBin model outperformed the FE-NegBin model. Conclusion For meta-analyses with binary outcomes, the considered common-beta BB models may be valuable extensions to the family of BB models.


1994 ◽  
Vol 4 (3) ◽  
pp. 205-221 ◽  
Author(s):  
Rainer Winkelmann ◽  
Klaus F. Zimmermann

2021 ◽  
Vol 3 (1) ◽  
pp. 1-13
Author(s):  
Muhammad Anus Hayat Khan ◽  
Ijaz Hussain

Each year more than three thousand people die and get serious injuries in traffic accidents. Count data model provide more precise tools for planners and decision makers to conduct proactive road safety planning.We analyzed the exploratory research of Road Traffic Accidents (RTAs) and furthermore explores the factors affecting the RTAs frequency in 36 districts of the Punjab over a time period of three years (July 1, 2013 June 30, 2016) with monthly data using panel count data models. Among the models considered, the random parameters Poisson panel count data model is found to fit the data best. The exploratory analysis shows that highly dense populated districts with large number of registered vehicles causes more accidents as compared to low density populated districts. It is found that, most of the variables used to control the variation in the frequency of RTAs counts play vital role with higher significance levels. The application of regression analysis and modeling of RTAs at district level in Punjab will help to identification of districts with high RTAs rates and this could help more efficient road safety management in the Punjab.


Sign in / Sign up

Export Citation Format

Share Document