Brain Imaging In Obsessive-Compulsive Disorder: Evidence for the Involvement of Frontal-Subcortical Circuitry in the Mediation of Symptomatology

CNS Spectrums ◽  
1996 ◽  
Vol 1 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Arthur L. Brody ◽  
Sanjaya Saxena

AbstractRecent brain-imaging studies have examined the neuroanatomy and pathophysiology of obsessive-compulsive disorder (OCD). Researchers have used computed tomography and magnetic resonance imaging to look at brain structure and single-photon emission computed tomography and positron emission tomography scanning to look at brain function in OCD subjects. In this article, we review these studies and discuss their methodology. We then present a theoretical model derived from these studies for how the brain mediates OCD symptomatology.Functional neuroimaging studies have pointed to hyperactivity of orbitofrontal-basal ganglionic–thalamic circuitry in patients with OCD. Our model posits an imbalance between the classical “direct” and “indirect” orbitofrontal–basal ganglionic–thalamic pathways in OCD subjects. The direct circuit appears to function as a positive feedback loop and may “capture” or “lock in” symptomatic OCD subjects. The indirect circuit, which usually provides tonic inhibition to the direct circuit, may be relatively weak.Finally, we discuss how frontal-subcortical brain circuitry may be involved in other neuropsychiatric illnesses, and we describe how monoamines, such as serotonin and dopamine, may be involved in regulating these circuits in OCD and other illnesses.

1997 ◽  
Vol 8 (S3) ◽  
pp. 239-243 ◽  
Author(s):  
David L. Sultzer

Neuroimaging studies have contributed greatly to our understanding of Alzheimer's disease and other dementias. Computed tomography and magnetic resonance imaging reveal brain structure and aid in the diagnostic evaluation of patients with cognitive impairment. Functional neuroimaging studies use positron emission tomography, single-photon emission computed tomography, and other methods to measure regional cerebral activity, including metabolic rate, blood flow, and neuroreceptor density. Functional neuroimaging results can be useful clinically and have also been used in a variety of research applications to examine physiologic variables in neuropsychiatric illnesses.


CNS Spectrums ◽  
2002 ◽  
Vol 7 (4) ◽  
pp. 286-299 ◽  
Author(s):  
Joseph R. Sadek ◽  
Thomas A. Hammeke

ABSTRACTHow can functional neuroimaging be applied to clinical neurology and psychiatry? This article reviews selected contributions of functional neuroimaging to the clinical neurosciences. We review selected technical aspects of positron emission tomography, single photon emission tomography, and functional magnetic resonance imaging with a focus on the relative strengths and weaknesses of these techniques. Consumers of functional neuroimaging research are encouraged to consider the limitations of imaging techniques and theoretical pitfalls of cognitive task design when interpreting results of functional imaging studies. Then, we selectively review the contributions of functional neuroimaging to neurology and psychiatry, including the areas of epilepsy, stroke, chronic pain, schizophrenia, depression, and obsessive-compulsive disorder. Future directions of functional neuroimaging research are offered, with the emphasis that the best conclusions are informed by a convergence of research from functional neuroimaging, neurophysiological, and lesion studies.


Sign in / Sign up

Export Citation Format

Share Document